Solve for N
N=\frac{14}{25q}
q\neq 0
Solve for q
q=\frac{14}{25N}
N\neq 0
Share
Copied to clipboard
Nq=\frac{14}{25}
Swap sides so that all variable terms are on the left hand side.
qN=\frac{14}{25}
The equation is in standard form.
\frac{qN}{q}=\frac{\frac{14}{25}}{q}
Divide both sides by q.
N=\frac{\frac{14}{25}}{q}
Dividing by q undoes the multiplication by q.
N=\frac{14}{25q}
Divide \frac{14}{25} by q.
Nq=\frac{14}{25}
Swap sides so that all variable terms are on the left hand side.
\frac{Nq}{N}=\frac{\frac{14}{25}}{N}
Divide both sides by N.
q=\frac{\frac{14}{25}}{N}
Dividing by N undoes the multiplication by N.
q=\frac{14}{25N}
Divide \frac{14}{25} by N.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}