Solve for x
x=\log_{\frac{5}{68}}\left(\frac{255}{14}\right)\approx -1.111926671
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(\frac{5}{68})}+\log_{\frac{5}{68}}\left(\frac{255}{14}\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(\frac{7}{17}\times \frac{5}{28}\right)^{x}=17\times \frac{15}{14}
Multiply both sides by \frac{15}{14}, the reciprocal of \frac{14}{15}.
\left(\frac{7}{17}\times \frac{5}{28}\right)^{x}=\frac{255}{14}
Multiply 17 and \frac{15}{14} to get \frac{255}{14}.
\left(\frac{5}{68}\right)^{x}=\frac{255}{14}
Multiply \frac{7}{17} and \frac{5}{28} to get \frac{5}{68}.
\log(\left(\frac{5}{68}\right)^{x})=\log(\frac{255}{14})
Take the logarithm of both sides of the equation.
x\log(\frac{5}{68})=\log(\frac{255}{14})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{255}{14})}{\log(\frac{5}{68})}
Divide both sides by \log(\frac{5}{68}).
x=\log_{\frac{5}{68}}\left(\frac{255}{14}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}