Solve for y
y=0.45
Graph
Share
Copied to clipboard
y\times \frac{14}{1.5}=4.2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\times \frac{140}{15}=4.2
Expand \frac{14}{1.5} by multiplying both numerator and the denominator by 10.
y\times \frac{28}{3}=4.2
Reduce the fraction \frac{140}{15} to lowest terms by extracting and canceling out 5.
y=4.2\times \frac{3}{28}
Multiply both sides by \frac{3}{28}, the reciprocal of \frac{28}{3}.
y=\frac{21}{5}\times \frac{3}{28}
Convert decimal number 4.2 to fraction \frac{42}{10}. Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
y=\frac{21\times 3}{5\times 28}
Multiply \frac{21}{5} times \frac{3}{28} by multiplying numerator times numerator and denominator times denominator.
y=\frac{63}{140}
Do the multiplications in the fraction \frac{21\times 3}{5\times 28}.
y=\frac{9}{20}
Reduce the fraction \frac{63}{140} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}