\frac { 14 \cdot 10 ^ { 3 } + ( 16 - 14 ) \cdot 10 ^ { 3 } \cdot [ - 7,5 - ( - 5 ) ] } { [ - 7,5 - ( - 10,533 ) ] } =
Evaluate
\frac{1000000}{337}\approx 2967,359050445
Factor
\frac{2 ^ {6} \cdot 5 ^ {6}}{337} = 2967\frac{121}{337} = 2967.359050445104
Share
Copied to clipboard
\frac{14\times 1000+\left(16-14\right)\times 10^{3}\left(-7,5-\left(-5\right)\right)}{-7,5-\left(-10,533\right)}
Calculate 10 to the power of 3 and get 1000.
\frac{14000+\left(16-14\right)\times 10^{3}\left(-7,5-\left(-5\right)\right)}{-7,5-\left(-10,533\right)}
Multiply 14 and 1000 to get 14000.
\frac{14000+2\times 10^{3}\left(-7,5-\left(-5\right)\right)}{-7,5-\left(-10,533\right)}
Subtract 14 from 16 to get 2.
\frac{14000+2\times 1000\left(-7,5-\left(-5\right)\right)}{-7,5-\left(-10,533\right)}
Calculate 10 to the power of 3 and get 1000.
\frac{14000+2000\left(-7,5-\left(-5\right)\right)}{-7,5-\left(-10,533\right)}
Multiply 2 and 1000 to get 2000.
\frac{14000+2000\left(-7,5+5\right)}{-7,5-\left(-10,533\right)}
The opposite of -5 is 5.
\frac{14000+2000\left(-2,5\right)}{-7,5-\left(-10,533\right)}
Add -7,5 and 5 to get -2,5.
\frac{14000-5000}{-7,5-\left(-10,533\right)}
Multiply 2000 and -2,5 to get -5000.
\frac{9000}{-7,5-\left(-10,533\right)}
Subtract 5000 from 14000 to get 9000.
\frac{9000}{-7,5+10,533}
The opposite of -10,533 is 10,533.
\frac{9000}{3,033}
Add -7,5 and 10,533 to get 3,033.
\frac{9000000}{3033}
Expand \frac{9000}{3,033} by multiplying both numerator and the denominator by 1000.
\frac{1000000}{337}
Reduce the fraction \frac{9000000}{3033} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}