Evaluate
\frac{33935546875\sqrt{2}}{986049380773527552\pi }\approx 0.000000015
Share
Copied to clipboard
\frac{139\times 10^{-3}\times 24^{-15}}{4\pi \sqrt{2}\times 10^{-15}}
Cancel out 2 in both numerator and denominator.
\frac{139\times 10^{12}\times 24^{-15}}{4\pi \sqrt{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{139\times 1000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Calculate 10 to the power of 12 and get 1000000000000.
\frac{139000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Multiply 139 and 1000000000000 to get 139000000000000.
\frac{139000000000000\times \frac{1}{504857282956046106624}}{4\pi \sqrt{2}}
Calculate 24 to the power of -15 and get \frac{1}{504857282956046106624}.
\frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}}
Multiply 139000000000000 and \frac{1}{504857282956046106624} to get \frac{33935546875}{123256172596690944}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \times 2}
The square of \sqrt{2} is 2.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{8\pi }
Multiply 4 and 2 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}