Evaluate
\frac{136}{15}\approx 9.066666667
Factor
\frac{2 ^ {3} \cdot 17}{3 \cdot 5} = 9\frac{1}{15} = 9.066666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)136}\\\end{array}
Use the 1^{st} digit 1 from dividend 136
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)136}\\\end{array}
Since 1 is less than 15, use the next digit 3 from dividend 136 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)136}\\\end{array}
Use the 2^{nd} digit 3 from dividend 136
\begin{array}{l}\phantom{15)}00\phantom{4}\\15\overline{)136}\\\end{array}
Since 13 is less than 15, use the next digit 6 from dividend 136 and add 0 to the quotient
\begin{array}{l}\phantom{15)}00\phantom{5}\\15\overline{)136}\\\end{array}
Use the 3^{rd} digit 6 from dividend 136
\begin{array}{l}\phantom{15)}009\phantom{6}\\15\overline{)136}\\\phantom{15)}\underline{\phantom{}135\phantom{}}\\\phantom{15)99}1\\\end{array}
Find closest multiple of 15 to 136. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 136 to get reminder 1. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }1
Since 1 is less than 15, stop the division. The reminder is 1. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}