Solve for v
v = -\frac{5320}{263} = -20\frac{60}{263} \approx -20.228136882
Share
Copied to clipboard
40\times 133+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 40v, the least common multiple of v,40,-20.
5320+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
Multiply 40 and 133 to get 5320.
5320-v=-2v\left(133-1\right)
Cancel out 40 and 40.
5320-v=-2v\times 132
Subtract 1 from 133 to get 132.
5320-v=-264v
Multiply -2 and 132 to get -264.
5320-v+264v=0
Add 264v to both sides.
5320+263v=0
Combine -v and 264v to get 263v.
263v=-5320
Subtract 5320 from both sides. Anything subtracted from zero gives its negation.
v=\frac{-5320}{263}
Divide both sides by 263.
v=-\frac{5320}{263}
Fraction \frac{-5320}{263} can be rewritten as -\frac{5320}{263} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}