Evaluate
\frac{26}{17}\approx 1.529411765
Factor
\frac{2 \cdot 13}{17} = 1\frac{9}{17} = 1.5294117647058822
Share
Copied to clipboard
\begin{array}{l}\phantom{850)}\phantom{1}\\850\overline{)1300}\\\end{array}
Use the 1^{st} digit 1 from dividend 1300
\begin{array}{l}\phantom{850)}0\phantom{2}\\850\overline{)1300}\\\end{array}
Since 1 is less than 850, use the next digit 3 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{850)}0\phantom{3}\\850\overline{)1300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1300
\begin{array}{l}\phantom{850)}00\phantom{4}\\850\overline{)1300}\\\end{array}
Since 13 is less than 850, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{850)}00\phantom{5}\\850\overline{)1300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1300
\begin{array}{l}\phantom{850)}000\phantom{6}\\850\overline{)1300}\\\end{array}
Since 130 is less than 850, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{850)}000\phantom{7}\\850\overline{)1300}\\\end{array}
Use the 4^{th} digit 0 from dividend 1300
\begin{array}{l}\phantom{850)}0001\phantom{8}\\850\overline{)1300}\\\phantom{850)}\underline{\phantom{9}850\phantom{}}\\\phantom{850)9}450\\\end{array}
Find closest multiple of 850 to 1300. We see that 1 \times 850 = 850 is the nearest. Now subtract 850 from 1300 to get reminder 450. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }450
Since 450 is less than 850, stop the division. The reminder is 450. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}