\frac { 130 \times 5 \% + x \times 9 \% } { 130 + x } = \frac { 6.4 } { 100 }
Solve for x
x=70
Graph
Share
Copied to clipboard
100\left(130\times \frac{5}{100}+x\times \frac{9}{100}\right)=\left(x+130\right)\times 6.4
Variable x cannot be equal to -130 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+130\right), the least common multiple of 130+x,100.
100\left(130\times \frac{1}{20}+x\times \frac{9}{100}\right)=\left(x+130\right)\times 6.4
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
100\left(\frac{13}{2}+x\times \frac{9}{100}\right)=\left(x+130\right)\times 6.4
Multiply 130 and \frac{1}{20} to get \frac{13}{2}.
650+100x\times \frac{9}{100}=\left(x+130\right)\times 6.4
Use the distributive property to multiply 100 by \frac{13}{2}+x\times \frac{9}{100}.
650+9x=\left(x+130\right)\times 6.4
Multiply 100 and \frac{9}{100} to get 9.
650+9x=6.4x+832
Use the distributive property to multiply x+130 by 6.4.
650+9x-6.4x=832
Subtract 6.4x from both sides.
650+2.6x=832
Combine 9x and -6.4x to get 2.6x.
2.6x=832-650
Subtract 650 from both sides.
2.6x=182
Subtract 650 from 832 to get 182.
x=\frac{182}{2.6}
Divide both sides by 2.6.
x=\frac{1820}{26}
Expand \frac{182}{2.6} by multiplying both numerator and the denominator by 10.
x=70
Divide 1820 by 26 to get 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}