Solve for x
x=-\frac{1}{4}=-0.25
Graph
Share
Copied to clipboard
2\left(13x-1\right)-\left(4-2x\right)=4\left(x-3\right)
Multiply both sides of the equation by 8, the least common multiple of 4,8,2.
26x-2-\left(4-2x\right)=4\left(x-3\right)
Use the distributive property to multiply 2 by 13x-1.
26x-2-4-\left(-2x\right)=4\left(x-3\right)
To find the opposite of 4-2x, find the opposite of each term.
26x-2-4+2x=4\left(x-3\right)
The opposite of -2x is 2x.
26x-6+2x=4\left(x-3\right)
Subtract 4 from -2 to get -6.
28x-6=4\left(x-3\right)
Combine 26x and 2x to get 28x.
28x-6=4x-12
Use the distributive property to multiply 4 by x-3.
28x-6-4x=-12
Subtract 4x from both sides.
24x-6=-12
Combine 28x and -4x to get 24x.
24x=-12+6
Add 6 to both sides.
24x=-6
Add -12 and 6 to get -6.
x=\frac{-6}{24}
Divide both sides by 24.
x=-\frac{1}{4}
Reduce the fraction \frac{-6}{24} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}