Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(13x-1\right)\times \frac{4x+2}{4}-4\left(2x-4\right)=2\left(x-5\right)
Multiply both sides of the equation by 12, the least common multiple of 2,4,3,6.
\frac{6\left(4x+2\right)}{4}\left(13x-1\right)-4\left(2x-4\right)=2\left(x-5\right)
Express 6\times \frac{4x+2}{4} as a single fraction.
13\times \frac{6\left(4x+2\right)}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply \frac{6\left(4x+2\right)}{4} by 13x-1.
13\times \frac{24x+12}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply 6 by 4x+2.
\frac{13\left(24x+12\right)}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Express 13\times \frac{24x+12}{4} as a single fraction.
\frac{13\left(24x+12\right)x}{4}-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Express \frac{13\left(24x+12\right)}{4}x as a single fraction.
\frac{13\left(24x+12\right)x}{4}-\frac{24x+12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply 6 by 4x+2.
\frac{13\left(24x+12\right)x-\left(24x+12\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Since \frac{13\left(24x+12\right)x}{4} and \frac{24x+12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{312x^{2}+156x-24x-12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Do the multiplications in 13\left(24x+12\right)x-\left(24x+12\right).
\frac{312x^{2}+132x-12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Combine like terms in 312x^{2}+156x-24x-12.
\frac{312x^{2}+132x-12}{4}-8x+16=2\left(x-5\right)
Use the distributive property to multiply -4 by 2x-4.
\frac{312x^{2}+132x-12}{4}-8x+16=2x-10
Use the distributive property to multiply 2 by x-5.
78x^{2}+33x-3-8x+16=2x-10
Divide each term of 312x^{2}+132x-12 by 4 to get 78x^{2}+33x-3.
78x^{2}+25x-3+16=2x-10
Combine 33x and -8x to get 25x.
78x^{2}+25x+13=2x-10
Add -3 and 16 to get 13.
78x^{2}+25x+13-2x=-10
Subtract 2x from both sides.
78x^{2}+23x+13=-10
Combine 25x and -2x to get 23x.
78x^{2}+23x+13+10=0
Add 10 to both sides.
78x^{2}+23x+23=0
Add 13 and 10 to get 23.
x=\frac{-23±\sqrt{23^{2}-4\times 78\times 23}}{2\times 78}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 78 for a, 23 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\times 78\times 23}}{2\times 78}
Square 23.
x=\frac{-23±\sqrt{529-312\times 23}}{2\times 78}
Multiply -4 times 78.
x=\frac{-23±\sqrt{529-7176}}{2\times 78}
Multiply -312 times 23.
x=\frac{-23±\sqrt{-6647}}{2\times 78}
Add 529 to -7176.
x=\frac{-23±17\sqrt{23}i}{2\times 78}
Take the square root of -6647.
x=\frac{-23±17\sqrt{23}i}{156}
Multiply 2 times 78.
x=\frac{-23+17\sqrt{23}i}{156}
Now solve the equation x=\frac{-23±17\sqrt{23}i}{156} when ± is plus. Add -23 to 17i\sqrt{23}.
x=\frac{-17\sqrt{23}i-23}{156}
Now solve the equation x=\frac{-23±17\sqrt{23}i}{156} when ± is minus. Subtract 17i\sqrt{23} from -23.
x=\frac{-23+17\sqrt{23}i}{156} x=\frac{-17\sqrt{23}i-23}{156}
The equation is now solved.
6\left(13x-1\right)\times \frac{4x+2}{4}-4\left(2x-4\right)=2\left(x-5\right)
Multiply both sides of the equation by 12, the least common multiple of 2,4,3,6.
\frac{6\left(4x+2\right)}{4}\left(13x-1\right)-4\left(2x-4\right)=2\left(x-5\right)
Express 6\times \frac{4x+2}{4} as a single fraction.
13\times \frac{6\left(4x+2\right)}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply \frac{6\left(4x+2\right)}{4} by 13x-1.
13\times \frac{24x+12}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply 6 by 4x+2.
\frac{13\left(24x+12\right)}{4}x-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Express 13\times \frac{24x+12}{4} as a single fraction.
\frac{13\left(24x+12\right)x}{4}-\frac{6\left(4x+2\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Express \frac{13\left(24x+12\right)}{4}x as a single fraction.
\frac{13\left(24x+12\right)x}{4}-\frac{24x+12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Use the distributive property to multiply 6 by 4x+2.
\frac{13\left(24x+12\right)x-\left(24x+12\right)}{4}-4\left(2x-4\right)=2\left(x-5\right)
Since \frac{13\left(24x+12\right)x}{4} and \frac{24x+12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{312x^{2}+156x-24x-12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Do the multiplications in 13\left(24x+12\right)x-\left(24x+12\right).
\frac{312x^{2}+132x-12}{4}-4\left(2x-4\right)=2\left(x-5\right)
Combine like terms in 312x^{2}+156x-24x-12.
\frac{312x^{2}+132x-12}{4}-8x+16=2\left(x-5\right)
Use the distributive property to multiply -4 by 2x-4.
\frac{312x^{2}+132x-12}{4}-8x+16=2x-10
Use the distributive property to multiply 2 by x-5.
78x^{2}+33x-3-8x+16=2x-10
Divide each term of 312x^{2}+132x-12 by 4 to get 78x^{2}+33x-3.
78x^{2}+25x-3+16=2x-10
Combine 33x and -8x to get 25x.
78x^{2}+25x+13=2x-10
Add -3 and 16 to get 13.
78x^{2}+25x+13-2x=-10
Subtract 2x from both sides.
78x^{2}+23x+13=-10
Combine 25x and -2x to get 23x.
78x^{2}+23x=-10-13
Subtract 13 from both sides.
78x^{2}+23x=-23
Subtract 13 from -10 to get -23.
\frac{78x^{2}+23x}{78}=-\frac{23}{78}
Divide both sides by 78.
x^{2}+\frac{23}{78}x=-\frac{23}{78}
Dividing by 78 undoes the multiplication by 78.
x^{2}+\frac{23}{78}x+\left(\frac{23}{156}\right)^{2}=-\frac{23}{78}+\left(\frac{23}{156}\right)^{2}
Divide \frac{23}{78}, the coefficient of the x term, by 2 to get \frac{23}{156}. Then add the square of \frac{23}{156} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{23}{78}x+\frac{529}{24336}=-\frac{23}{78}+\frac{529}{24336}
Square \frac{23}{156} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{23}{78}x+\frac{529}{24336}=-\frac{6647}{24336}
Add -\frac{23}{78} to \frac{529}{24336} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{156}\right)^{2}=-\frac{6647}{24336}
Factor x^{2}+\frac{23}{78}x+\frac{529}{24336}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{156}\right)^{2}}=\sqrt{-\frac{6647}{24336}}
Take the square root of both sides of the equation.
x+\frac{23}{156}=\frac{17\sqrt{23}i}{156} x+\frac{23}{156}=-\frac{17\sqrt{23}i}{156}
Simplify.
x=\frac{-23+17\sqrt{23}i}{156} x=\frac{-17\sqrt{23}i-23}{156}
Subtract \frac{23}{156} from both sides of the equation.