Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(13-x\right)=6\times 6
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x, the least common multiple of 6,x.
13x-x^{2}=6\times 6
Use the distributive property to multiply x by 13-x.
13x-x^{2}=36
Multiply 6 and 6 to get 36.
13x-x^{2}-36=0
Subtract 36 from both sides.
-x^{2}+13x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 13 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-1\right)\left(-36\right)}}{2\left(-1\right)}
Square 13.
x=\frac{-13±\sqrt{169+4\left(-36\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-13±\sqrt{169-144}}{2\left(-1\right)}
Multiply 4 times -36.
x=\frac{-13±\sqrt{25}}{2\left(-1\right)}
Add 169 to -144.
x=\frac{-13±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{-13±5}{-2}
Multiply 2 times -1.
x=-\frac{8}{-2}
Now solve the equation x=\frac{-13±5}{-2} when ± is plus. Add -13 to 5.
x=4
Divide -8 by -2.
x=-\frac{18}{-2}
Now solve the equation x=\frac{-13±5}{-2} when ± is minus. Subtract 5 from -13.
x=9
Divide -18 by -2.
x=4 x=9
The equation is now solved.
x\left(13-x\right)=6\times 6
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x, the least common multiple of 6,x.
13x-x^{2}=6\times 6
Use the distributive property to multiply x by 13-x.
13x-x^{2}=36
Multiply 6 and 6 to get 36.
-x^{2}+13x=36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+13x}{-1}=\frac{36}{-1}
Divide both sides by -1.
x^{2}+\frac{13}{-1}x=\frac{36}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-13x=\frac{36}{-1}
Divide 13 by -1.
x^{2}-13x=-36
Divide 36 by -1.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-36+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-36+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{25}{4}
Add -36 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{5}{2} x-\frac{13}{2}=-\frac{5}{2}
Simplify.
x=9 x=4
Add \frac{13}{2} to both sides of the equation.