Solve for x
x=\frac{8-4\alpha }{7}
Solve for α
\alpha =-\frac{7x}{4}+2
Graph
Share
Copied to clipboard
13-7x-4\times 2=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
13-7x-8=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Multiply -4 and 2 to get -8.
5-7x=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Subtract 8 from 13 to get 5.
5-7x=2\alpha -4\left(1-\frac{2\alpha +1}{4}\right)
Anything divided by one gives itself.
5-7x=2\alpha -4\left(1-\left(\frac{1}{2}\alpha +\frac{1}{4}\right)\right)
Divide each term of 2\alpha +1 by 4 to get \frac{1}{2}\alpha +\frac{1}{4}.
5-7x=2\alpha -4\left(1-\frac{1}{2}\alpha -\frac{1}{4}\right)
To find the opposite of \frac{1}{2}\alpha +\frac{1}{4}, find the opposite of each term.
5-7x=2\alpha -4\left(\frac{3}{4}-\frac{1}{2}\alpha \right)
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
5-7x=2\alpha -3+2\alpha
Use the distributive property to multiply -4 by \frac{3}{4}-\frac{1}{2}\alpha .
5-7x=4\alpha -3
Combine 2\alpha and 2\alpha to get 4\alpha .
-7x=4\alpha -3-5
Subtract 5 from both sides.
-7x=4\alpha -8
Subtract 5 from -3 to get -8.
\frac{-7x}{-7}=\frac{4\alpha -8}{-7}
Divide both sides by -7.
x=\frac{4\alpha -8}{-7}
Dividing by -7 undoes the multiplication by -7.
x=\frac{8-4\alpha }{7}
Divide -8+4\alpha by -7.
13-7x-4\times 2=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2.
13-7x-8=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Multiply -4 and 2 to get -8.
5-7x=2\alpha -4\left(\frac{1}{1}-\frac{2\alpha +1}{4}\right)
Subtract 8 from 13 to get 5.
5-7x=2\alpha -4\left(1-\frac{2\alpha +1}{4}\right)
Anything divided by one gives itself.
5-7x=2\alpha -4\left(1-\left(\frac{1}{2}\alpha +\frac{1}{4}\right)\right)
Divide each term of 2\alpha +1 by 4 to get \frac{1}{2}\alpha +\frac{1}{4}.
5-7x=2\alpha -4\left(1-\frac{1}{2}\alpha -\frac{1}{4}\right)
To find the opposite of \frac{1}{2}\alpha +\frac{1}{4}, find the opposite of each term.
5-7x=2\alpha -4\left(\frac{3}{4}-\frac{1}{2}\alpha \right)
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
5-7x=2\alpha -3+2\alpha
Use the distributive property to multiply -4 by \frac{3}{4}-\frac{1}{2}\alpha .
5-7x=4\alpha -3
Combine 2\alpha and 2\alpha to get 4\alpha .
4\alpha -3=5-7x
Swap sides so that all variable terms are on the left hand side.
4\alpha =5-7x+3
Add 3 to both sides.
4\alpha =8-7x
Add 5 and 3 to get 8.
\frac{4\alpha }{4}=\frac{8-7x}{4}
Divide both sides by 4.
\alpha =\frac{8-7x}{4}
Dividing by 4 undoes the multiplication by 4.
\alpha =-\frac{7x}{4}+2
Divide 8-7x by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}