Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{13}{9}y^{2}-\frac{52}{3}y+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-\frac{52}{3}\right)±\sqrt{\left(-\frac{52}{3}\right)^{2}-4\times \frac{13}{9}\times 5}}{2\times \frac{13}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{9} for a, -\frac{52}{3} for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{52}{3}\right)±\sqrt{\frac{2704}{9}-4\times \frac{13}{9}\times 5}}{2\times \frac{13}{9}}
Square -\frac{52}{3} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-\frac{52}{3}\right)±\sqrt{\frac{2704}{9}-\frac{52}{9}\times 5}}{2\times \frac{13}{9}}
Multiply -4 times \frac{13}{9}.
y=\frac{-\left(-\frac{52}{3}\right)±\sqrt{\frac{2704-260}{9}}}{2\times \frac{13}{9}}
Multiply -\frac{52}{9} times 5.
y=\frac{-\left(-\frac{52}{3}\right)±\sqrt{\frac{2444}{9}}}{2\times \frac{13}{9}}
Add \frac{2704}{9} to -\frac{260}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{52}{3}\right)±\frac{2\sqrt{611}}{3}}{2\times \frac{13}{9}}
Take the square root of \frac{2444}{9}.
y=\frac{\frac{52}{3}±\frac{2\sqrt{611}}{3}}{2\times \frac{13}{9}}
The opposite of -\frac{52}{3} is \frac{52}{3}.
y=\frac{\frac{52}{3}±\frac{2\sqrt{611}}{3}}{\frac{26}{9}}
Multiply 2 times \frac{13}{9}.
y=\frac{2\sqrt{611}+52}{\frac{26}{9}\times 3}
Now solve the equation y=\frac{\frac{52}{3}±\frac{2\sqrt{611}}{3}}{\frac{26}{9}} when ± is plus. Add \frac{52}{3} to \frac{2\sqrt{611}}{3}.
y=\frac{3\sqrt{611}}{13}+6
Divide \frac{52+2\sqrt{611}}{3} by \frac{26}{9} by multiplying \frac{52+2\sqrt{611}}{3} by the reciprocal of \frac{26}{9}.
y=\frac{52-2\sqrt{611}}{\frac{26}{9}\times 3}
Now solve the equation y=\frac{\frac{52}{3}±\frac{2\sqrt{611}}{3}}{\frac{26}{9}} when ± is minus. Subtract \frac{2\sqrt{611}}{3} from \frac{52}{3}.
y=-\frac{3\sqrt{611}}{13}+6
Divide \frac{52-2\sqrt{611}}{3} by \frac{26}{9} by multiplying \frac{52-2\sqrt{611}}{3} by the reciprocal of \frac{26}{9}.
y=\frac{3\sqrt{611}}{13}+6 y=-\frac{3\sqrt{611}}{13}+6
The equation is now solved.
\frac{13}{9}y^{2}-\frac{52}{3}y+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{13}{9}y^{2}-\frac{52}{3}y+5-5=-5
Subtract 5 from both sides of the equation.
\frac{13}{9}y^{2}-\frac{52}{3}y=-5
Subtracting 5 from itself leaves 0.
\frac{\frac{13}{9}y^{2}-\frac{52}{3}y}{\frac{13}{9}}=-\frac{5}{\frac{13}{9}}
Divide both sides of the equation by \frac{13}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{\frac{52}{3}}{\frac{13}{9}}\right)y=-\frac{5}{\frac{13}{9}}
Dividing by \frac{13}{9} undoes the multiplication by \frac{13}{9}.
y^{2}-12y=-\frac{5}{\frac{13}{9}}
Divide -\frac{52}{3} by \frac{13}{9} by multiplying -\frac{52}{3} by the reciprocal of \frac{13}{9}.
y^{2}-12y=-\frac{45}{13}
Divide -5 by \frac{13}{9} by multiplying -5 by the reciprocal of \frac{13}{9}.
y^{2}-12y+\left(-6\right)^{2}=-\frac{45}{13}+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-12y+36=-\frac{45}{13}+36
Square -6.
y^{2}-12y+36=\frac{423}{13}
Add -\frac{45}{13} to 36.
\left(y-6\right)^{2}=\frac{423}{13}
Factor y^{2}-12y+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-6\right)^{2}}=\sqrt{\frac{423}{13}}
Take the square root of both sides of the equation.
y-6=\frac{3\sqrt{611}}{13} y-6=-\frac{3\sqrt{611}}{13}
Simplify.
y=\frac{3\sqrt{611}}{13}+6 y=-\frac{3\sqrt{611}}{13}+6
Add 6 to both sides of the equation.