Evaluate
\frac{454}{125}=3.632
Factor
\frac{2 \cdot 227}{5 ^ {3}} = 3\frac{79}{125} = 3.632
Share
Copied to clipboard
\frac{13\times 3}{25}+\frac{77}{250}\times 4+\frac{21}{125}\times 5
Express \frac{13}{25}\times 3 as a single fraction.
\frac{39}{25}+\frac{77}{250}\times 4+\frac{21}{125}\times 5
Multiply 13 and 3 to get 39.
\frac{39}{25}+\frac{77\times 4}{250}+\frac{21}{125}\times 5
Express \frac{77}{250}\times 4 as a single fraction.
\frac{39}{25}+\frac{308}{250}+\frac{21}{125}\times 5
Multiply 77 and 4 to get 308.
\frac{39}{25}+\frac{154}{125}+\frac{21}{125}\times 5
Reduce the fraction \frac{308}{250} to lowest terms by extracting and canceling out 2.
\frac{195}{125}+\frac{154}{125}+\frac{21}{125}\times 5
Least common multiple of 25 and 125 is 125. Convert \frac{39}{25} and \frac{154}{125} to fractions with denominator 125.
\frac{195+154}{125}+\frac{21}{125}\times 5
Since \frac{195}{125} and \frac{154}{125} have the same denominator, add them by adding their numerators.
\frac{349}{125}+\frac{21}{125}\times 5
Add 195 and 154 to get 349.
\frac{349}{125}+\frac{21\times 5}{125}
Express \frac{21}{125}\times 5 as a single fraction.
\frac{349}{125}+\frac{105}{125}
Multiply 21 and 5 to get 105.
\frac{349+105}{125}
Since \frac{349}{125} and \frac{105}{125} have the same denominator, add them by adding their numerators.
\frac{454}{125}
Add 349 and 105 to get 454.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}