Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
\frac{5}{4}xy-\frac{1}{2}ab=-13b
Subtract 13b from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}ab=-13b-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides.
\left(-\frac{b}{2}\right)a=-\frac{5xy}{4}-13b
The equation is in standard form.
\frac{\left(-\frac{b}{2}\right)a}{-\frac{b}{2}}=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Divide both sides by -\frac{1}{2}b.
a=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Dividing by -\frac{1}{2}b undoes the multiplication by -\frac{1}{2}b.
a=\frac{5xy}{2b}+26
Divide -13b-\frac{5xy}{4} by -\frac{1}{2}b.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
13b-\frac{1}{2}ab=-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides. Anything subtracted from zero gives its negation.
\left(13-\frac{1}{2}a\right)b=-\frac{5}{4}xy
Combine all terms containing b.
\left(-\frac{a}{2}+13\right)b=-\frac{5xy}{4}
The equation is in standard form.
\frac{\left(-\frac{a}{2}+13\right)b}{-\frac{a}{2}+13}=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Divide both sides by 13-\frac{1}{2}a.
b=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Dividing by 13-\frac{1}{2}a undoes the multiplication by 13-\frac{1}{2}a.
b=-\frac{5xy}{2\left(26-a\right)}
Divide -\frac{5xy}{4} by 13-\frac{1}{2}a.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
\frac{5}{4}xy-\frac{1}{2}ab=-13b
Subtract 13b from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}ab=-13b-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides.
\left(-\frac{b}{2}\right)a=-\frac{5xy}{4}-13b
The equation is in standard form.
\frac{\left(-\frac{b}{2}\right)a}{-\frac{b}{2}}=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Divide both sides by -\frac{1}{2}b.
a=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Dividing by -\frac{1}{2}b undoes the multiplication by -\frac{1}{2}b.
a=\frac{5xy}{2b}+26
Divide -13b-\frac{5xy}{4} by -\frac{1}{2}b.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
13b-\frac{1}{2}ab=-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides. Anything subtracted from zero gives its negation.
\left(13-\frac{1}{2}a\right)b=-\frac{5}{4}xy
Combine all terms containing b.
\left(-\frac{a}{2}+13\right)b=-\frac{5xy}{4}
The equation is in standard form.
\frac{\left(-\frac{a}{2}+13\right)b}{-\frac{a}{2}+13}=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Divide both sides by 13-\frac{1}{2}a.
b=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Dividing by 13-\frac{1}{2}a undoes the multiplication by 13-\frac{1}{2}a.
b=-\frac{5xy}{2\left(26-a\right)}
Divide -\frac{5xy}{4} by 13-\frac{1}{2}a.