Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{5xy}{2b}+26\text{, }&b\neq 0\\a\in \mathrm{C}\text{, }&\left(x=0\text{ or }y=0\right)\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{5xy}{2\left(26-a\right)}\text{, }&a\neq 26\\b\in \mathrm{C}\text{, }&\left(x=0\text{ or }y=0\right)\text{ and }a=26\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{5xy}{2b}+26\text{, }&b\neq 0\\a\in \mathrm{R}\text{, }&\left(x=0\text{ or }y=0\right)\text{ and }b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{5xy}{2\left(26-a\right)}\text{, }&a\neq 26\\b\in \mathrm{R}\text{, }&\left(x=0\text{ or }y=0\right)\text{ and }a=26\end{matrix}\right.
Graph
Share
Copied to clipboard
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
\frac{5}{4}xy-\frac{1}{2}ab=-13b
Subtract 13b from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}ab=-13b-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides.
\left(-\frac{b}{2}\right)a=-\frac{5xy}{4}-13b
The equation is in standard form.
\frac{\left(-\frac{b}{2}\right)a}{-\frac{b}{2}}=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Divide both sides by -\frac{1}{2}b.
a=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Dividing by -\frac{1}{2}b undoes the multiplication by -\frac{1}{2}b.
a=\frac{5xy}{2b}+26
Divide -13b-\frac{5xy}{4} by -\frac{1}{2}b.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
13b-\frac{1}{2}ab=-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides. Anything subtracted from zero gives its negation.
\left(13-\frac{1}{2}a\right)b=-\frac{5}{4}xy
Combine all terms containing b.
\left(-\frac{a}{2}+13\right)b=-\frac{5xy}{4}
The equation is in standard form.
\frac{\left(-\frac{a}{2}+13\right)b}{-\frac{a}{2}+13}=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Divide both sides by 13-\frac{1}{2}a.
b=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Dividing by 13-\frac{1}{2}a undoes the multiplication by 13-\frac{1}{2}a.
b=-\frac{5xy}{2\left(26-a\right)}
Divide -\frac{5xy}{4} by 13-\frac{1}{2}a.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
\frac{5}{4}xy-\frac{1}{2}ab=-13b
Subtract 13b from both sides. Anything subtracted from zero gives its negation.
-\frac{1}{2}ab=-13b-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides.
\left(-\frac{b}{2}\right)a=-\frac{5xy}{4}-13b
The equation is in standard form.
\frac{\left(-\frac{b}{2}\right)a}{-\frac{b}{2}}=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Divide both sides by -\frac{1}{2}b.
a=\frac{-\frac{5xy}{4}-13b}{-\frac{b}{2}}
Dividing by -\frac{1}{2}b undoes the multiplication by -\frac{1}{2}b.
a=\frac{5xy}{2b}+26
Divide -13b-\frac{5xy}{4} by -\frac{1}{2}b.
13b-\frac{1}{4}xy+\frac{3}{2}xy-\frac{1}{2}ab=0
Multiply \frac{13}{2} and 2 to get 13.
13b+\frac{5}{4}xy-\frac{1}{2}ab=0
Combine -\frac{1}{4}xy and \frac{3}{2}xy to get \frac{5}{4}xy.
13b-\frac{1}{2}ab=-\frac{5}{4}xy
Subtract \frac{5}{4}xy from both sides. Anything subtracted from zero gives its negation.
\left(13-\frac{1}{2}a\right)b=-\frac{5}{4}xy
Combine all terms containing b.
\left(-\frac{a}{2}+13\right)b=-\frac{5xy}{4}
The equation is in standard form.
\frac{\left(-\frac{a}{2}+13\right)b}{-\frac{a}{2}+13}=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Divide both sides by 13-\frac{1}{2}a.
b=-\frac{\frac{5xy}{4}}{-\frac{a}{2}+13}
Dividing by 13-\frac{1}{2}a undoes the multiplication by 13-\frac{1}{2}a.
b=-\frac{5xy}{2\left(26-a\right)}
Divide -\frac{5xy}{4} by 13-\frac{1}{2}a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}