Solve for x
x=\frac{\sqrt{3}}{12}+\frac{1}{4}\approx 0.394337567
x=-\frac{\sqrt{3}}{12}+\frac{1}{4}\approx 0.105662433
Graph
Share
Copied to clipboard
\frac{7}{6}-2x+4x^{2}=1
Add \frac{13}{12} and \frac{1}{12} to get \frac{7}{6}.
\frac{7}{6}-2x+4x^{2}-1=0
Subtract 1 from both sides.
\frac{1}{6}-2x+4x^{2}=0
Subtract 1 from \frac{7}{6} to get \frac{1}{6}.
4x^{2}-2x+\frac{1}{6}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times \frac{1}{6}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -2 for b, and \frac{1}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\times \frac{1}{6}}}{2\times 4}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-16\times \frac{1}{6}}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-2\right)±\sqrt{4-\frac{8}{3}}}{2\times 4}
Multiply -16 times \frac{1}{6}.
x=\frac{-\left(-2\right)±\sqrt{\frac{4}{3}}}{2\times 4}
Add 4 to -\frac{8}{3}.
x=\frac{-\left(-2\right)±\frac{2\sqrt{3}}{3}}{2\times 4}
Take the square root of \frac{4}{3}.
x=\frac{2±\frac{2\sqrt{3}}{3}}{2\times 4}
The opposite of -2 is 2.
x=\frac{2±\frac{2\sqrt{3}}{3}}{8}
Multiply 2 times 4.
x=\frac{\frac{2\sqrt{3}}{3}+2}{8}
Now solve the equation x=\frac{2±\frac{2\sqrt{3}}{3}}{8} when ± is plus. Add 2 to \frac{2\sqrt{3}}{3}.
x=\frac{\sqrt{3}}{12}+\frac{1}{4}
Divide 2+\frac{2\sqrt{3}}{3} by 8.
x=\frac{-\frac{2\sqrt{3}}{3}+2}{8}
Now solve the equation x=\frac{2±\frac{2\sqrt{3}}{3}}{8} when ± is minus. Subtract \frac{2\sqrt{3}}{3} from 2.
x=-\frac{\sqrt{3}}{12}+\frac{1}{4}
Divide 2-\frac{2\sqrt{3}}{3} by 8.
x=\frac{\sqrt{3}}{12}+\frac{1}{4} x=-\frac{\sqrt{3}}{12}+\frac{1}{4}
The equation is now solved.
\frac{7}{6}-2x+4x^{2}=1
Add \frac{13}{12} and \frac{1}{12} to get \frac{7}{6}.
-2x+4x^{2}=1-\frac{7}{6}
Subtract \frac{7}{6} from both sides.
-2x+4x^{2}=-\frac{1}{6}
Subtract \frac{7}{6} from 1 to get -\frac{1}{6}.
4x^{2}-2x=-\frac{1}{6}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-2x}{4}=-\frac{\frac{1}{6}}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{2}{4}\right)x=-\frac{\frac{1}{6}}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{1}{2}x=-\frac{\frac{1}{6}}{4}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x=-\frac{1}{24}
Divide -\frac{1}{6} by 4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{24}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{24}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{48}
Add -\frac{1}{24} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{48}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{48}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{3}}{12} x-\frac{1}{4}=-\frac{\sqrt{3}}{12}
Simplify.
x=\frac{\sqrt{3}}{12}+\frac{1}{4} x=-\frac{\sqrt{3}}{12}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}