Verify
false
Share
Copied to clipboard
\frac{13}{\frac{10}{9}+\frac{25}{9}+\frac{4}{9}}=\frac{15}{9}
Anything divided by one gives itself.
\frac{13}{\frac{10+25}{9}+\frac{4}{9}}=\frac{15}{9}
Since \frac{10}{9} and \frac{25}{9} have the same denominator, add them by adding their numerators.
\frac{13}{\frac{35}{9}+\frac{4}{9}}=\frac{15}{9}
Add 10 and 25 to get 35.
\frac{13}{\frac{35+4}{9}}=\frac{15}{9}
Since \frac{35}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{13}{\frac{39}{9}}=\frac{15}{9}
Add 35 and 4 to get 39.
\frac{13}{\frac{13}{3}}=\frac{15}{9}
Reduce the fraction \frac{39}{9} to lowest terms by extracting and canceling out 3.
13\times \frac{3}{13}=\frac{15}{9}
Divide 13 by \frac{13}{3} by multiplying 13 by the reciprocal of \frac{13}{3}.
3=\frac{15}{9}
Cancel out 13 and 13.
3=\frac{5}{3}
Reduce the fraction \frac{15}{9} to lowest terms by extracting and canceling out 3.
\frac{9}{3}=\frac{5}{3}
Convert 3 to fraction \frac{9}{3}.
\text{false}
Compare \frac{9}{3} and \frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}