Verify
true
Share
Copied to clipboard
3\left(13+1\right)\geq 54\times \frac{4}{3}-30
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3\times 14\geq 54\times \frac{4}{3}-30
Add 13 and 1 to get 14.
42\geq 54\times \frac{4}{3}-30
Multiply 3 and 14 to get 42.
42\geq \frac{54\times 4}{3}-30
Express 54\times \frac{4}{3} as a single fraction.
42\geq \frac{216}{3}-30
Multiply 54 and 4 to get 216.
42\geq 72-30
Divide 216 by 3 to get 72.
42\geq 42
Subtract 30 from 72 to get 42.
\text{true}
Compare 42 and 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}