Evaluate
1111
Factor
11\times 101
Share
Copied to clipboard
\frac{1296\left(1-\left(-\frac{1}{7776}\right)\right)}{1+\frac{1}{6}}
Calculate -\frac{1}{6} to the power of 5 and get -\frac{1}{7776}.
\frac{1296\left(1+\frac{1}{7776}\right)}{1+\frac{1}{6}}
The opposite of -\frac{1}{7776} is \frac{1}{7776}.
\frac{1296\left(\frac{7776}{7776}+\frac{1}{7776}\right)}{1+\frac{1}{6}}
Convert 1 to fraction \frac{7776}{7776}.
\frac{1296\times \frac{7776+1}{7776}}{1+\frac{1}{6}}
Since \frac{7776}{7776} and \frac{1}{7776} have the same denominator, add them by adding their numerators.
\frac{1296\times \frac{7777}{7776}}{1+\frac{1}{6}}
Add 7776 and 1 to get 7777.
\frac{\frac{1296\times 7777}{7776}}{1+\frac{1}{6}}
Express 1296\times \frac{7777}{7776} as a single fraction.
\frac{\frac{10078992}{7776}}{1+\frac{1}{6}}
Multiply 1296 and 7777 to get 10078992.
\frac{\frac{7777}{6}}{1+\frac{1}{6}}
Reduce the fraction \frac{10078992}{7776} to lowest terms by extracting and canceling out 1296.
\frac{\frac{7777}{6}}{\frac{6}{6}+\frac{1}{6}}
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{7777}{6}}{\frac{6+1}{6}}
Since \frac{6}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{7777}{6}}{\frac{7}{6}}
Add 6 and 1 to get 7.
\frac{7777}{6}\times \frac{6}{7}
Divide \frac{7777}{6} by \frac{7}{6} by multiplying \frac{7777}{6} by the reciprocal of \frac{7}{6}.
\frac{7777\times 6}{6\times 7}
Multiply \frac{7777}{6} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{7777}{7}
Cancel out 6 in both numerator and denominator.
1111
Divide 7777 by 7 to get 1111.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}