Evaluate
\frac{125}{42}\approx 2.976190476
Factor
\frac{5 ^ {3}}{2 \cdot 3 \cdot 7} = 2\frac{41}{42} = 2.9761904761904763
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)125}\\\end{array}
Since 1 is less than 42, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)125}\\\end{array}
Since 12 is less than 42, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{42)}002\phantom{6}\\42\overline{)125}\\\phantom{42)}\underline{\phantom{9}84\phantom{}}\\\phantom{42)9}41\\\end{array}
Find closest multiple of 42 to 125. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 125 to get reminder 41. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }41
Since 41 is less than 42, stop the division. The reminder is 41. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}