Evaluate
-\frac{77}{12}\approx -6.416666667
Factor
-\frac{77}{12} = -6\frac{5}{12} = -6.416666666666667
Share
Copied to clipboard
\frac{125\left(-8\right)}{4\times 5}\times \frac{1}{10}-\frac{\frac{4}{3}}{-2}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Multiply \frac{125}{4} times -\frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-1000}{20}\times \frac{1}{10}-\frac{\frac{4}{3}}{-2}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Do the multiplications in the fraction \frac{125\left(-8\right)}{4\times 5}.
-50\times \frac{1}{10}-\frac{\frac{4}{3}}{-2}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Divide -1000 by 20 to get -50.
\frac{-50}{10}-\frac{\frac{4}{3}}{-2}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Multiply -50 and \frac{1}{10} to get \frac{-50}{10}.
-5-\frac{\frac{4}{3}}{-2}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Divide -50 by 10 to get -5.
-5-\frac{4}{3\left(-2\right)}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Express \frac{\frac{4}{3}}{-2} as a single fraction.
-5-\frac{4}{-6}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Multiply 3 and -2 to get -6.
-5-\left(-\frac{2}{3}\right)-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
-5+\frac{2}{3}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
The opposite of -\frac{2}{3} is \frac{2}{3}.
-\frac{15}{3}+\frac{2}{3}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Convert -5 to fraction -\frac{15}{3}.
\frac{-15+2}{3}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Since -\frac{15}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
-\frac{13}{3}-\frac{5}{8}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Add -15 and 2 to get -13.
-\frac{104}{24}-\frac{15}{24}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Least common multiple of 3 and 8 is 24. Convert -\frac{13}{3} and \frac{5}{8} to fractions with denominator 24.
\frac{-104-15}{24}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Since -\frac{104}{24} and \frac{15}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{119}{24}-\left(-\frac{5}{12}\left(-\frac{7}{2}\right)\right)
Subtract 15 from -104 to get -119.
-\frac{119}{24}-\frac{-5\left(-7\right)}{12\times 2}
Multiply -\frac{5}{12} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{119}{24}-\frac{35}{24}
Do the multiplications in the fraction \frac{-5\left(-7\right)}{12\times 2}.
\frac{-119-35}{24}
Since -\frac{119}{24} and \frac{35}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-154}{24}
Subtract 35 from -119 to get -154.
-\frac{77}{12}
Reduce the fraction \frac{-154}{24} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}