Evaluate
\frac{125}{21}\approx 5.952380952
Factor
\frac{5 ^ {3}}{3 \cdot 7} = 5\frac{20}{21} = 5.9523809523809526
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)125}\\\end{array}
Since 1 is less than 21, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)125}\\\end{array}
Since 12 is less than 21, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{21)}005\phantom{6}\\21\overline{)125}\\\phantom{21)}\underline{\phantom{}105\phantom{}}\\\phantom{21)9}20\\\end{array}
Find closest multiple of 21 to 125. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 125 to get reminder 20. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }20
Since 20 is less than 21, stop the division. The reminder is 20. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}