Evaluate
\frac{31}{24}\approx 1.291666667
Factor
\frac{31}{2 ^ {3} \cdot 3} = 1\frac{7}{24} = 1.2916666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{96)}\phantom{1}\\96\overline{)124}\\\end{array}
Use the 1^{st} digit 1 from dividend 124
\begin{array}{l}\phantom{96)}0\phantom{2}\\96\overline{)124}\\\end{array}
Since 1 is less than 96, use the next digit 2 from dividend 124 and add 0 to the quotient
\begin{array}{l}\phantom{96)}0\phantom{3}\\96\overline{)124}\\\end{array}
Use the 2^{nd} digit 2 from dividend 124
\begin{array}{l}\phantom{96)}00\phantom{4}\\96\overline{)124}\\\end{array}
Since 12 is less than 96, use the next digit 4 from dividend 124 and add 0 to the quotient
\begin{array}{l}\phantom{96)}00\phantom{5}\\96\overline{)124}\\\end{array}
Use the 3^{rd} digit 4 from dividend 124
\begin{array}{l}\phantom{96)}001\phantom{6}\\96\overline{)124}\\\phantom{96)}\underline{\phantom{9}96\phantom{}}\\\phantom{96)9}28\\\end{array}
Find closest multiple of 96 to 124. We see that 1 \times 96 = 96 is the nearest. Now subtract 96 from 124 to get reminder 28. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }28
Since 28 is less than 96, stop the division. The reminder is 28. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}