Evaluate
\frac{124}{15}\approx 8.266666667
Factor
\frac{2 ^ {2} \cdot 31}{3 \cdot 5} = 8\frac{4}{15} = 8.266666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)124}\\\end{array}
Use the 1^{st} digit 1 from dividend 124
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)124}\\\end{array}
Since 1 is less than 15, use the next digit 2 from dividend 124 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)124}\\\end{array}
Use the 2^{nd} digit 2 from dividend 124
\begin{array}{l}\phantom{15)}00\phantom{4}\\15\overline{)124}\\\end{array}
Since 12 is less than 15, use the next digit 4 from dividend 124 and add 0 to the quotient
\begin{array}{l}\phantom{15)}00\phantom{5}\\15\overline{)124}\\\end{array}
Use the 3^{rd} digit 4 from dividend 124
\begin{array}{l}\phantom{15)}008\phantom{6}\\15\overline{)124}\\\phantom{15)}\underline{\phantom{}120\phantom{}}\\\phantom{15)99}4\\\end{array}
Find closest multiple of 15 to 124. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 124 to get reminder 4. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }4
Since 4 is less than 15, stop the division. The reminder is 4. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}