Evaluate
\frac{123}{35}\approx 3.514285714
Factor
\frac{3 \cdot 41}{5 \cdot 7} = 3\frac{18}{35} = 3.5142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)123}\\\end{array}
Use the 1^{st} digit 1 from dividend 123
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)123}\\\end{array}
Since 1 is less than 35, use the next digit 2 from dividend 123 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)123}\\\end{array}
Use the 2^{nd} digit 2 from dividend 123
\begin{array}{l}\phantom{35)}00\phantom{4}\\35\overline{)123}\\\end{array}
Since 12 is less than 35, use the next digit 3 from dividend 123 and add 0 to the quotient
\begin{array}{l}\phantom{35)}00\phantom{5}\\35\overline{)123}\\\end{array}
Use the 3^{rd} digit 3 from dividend 123
\begin{array}{l}\phantom{35)}003\phantom{6}\\35\overline{)123}\\\phantom{35)}\underline{\phantom{}105\phantom{}}\\\phantom{35)9}18\\\end{array}
Find closest multiple of 35 to 123. We see that 3 \times 35 = 105 is the nearest. Now subtract 105 from 123 to get reminder 18. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }18
Since 18 is less than 35, stop the division. The reminder is 18. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}