\frac { 1200 m } { 1 d k } = \frac { k m } { 1 s a }
Solve for a
\left\{\begin{matrix}a=\frac{dk^{2}}{1200s}\text{, }&s\neq 0\text{ and }d\neq 0\text{ and }k\neq 0\\a\neq 0\text{, }&m=0\text{ and }d\neq 0\text{ and }k\neq 0\text{ and }s\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{1200as}{k^{2}}\text{, }&k\neq 0\text{ and }s\neq 0\text{ and }a\neq 0\\d\neq 0\text{, }&m=0\text{ and }s\neq 0\text{ and }a\neq 0\text{ and }k\neq 0\end{matrix}\right.
Share
Copied to clipboard
sa\times 1200m=dkkm
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by adks, the least common multiple of 1dk,1sa.
sa\times 1200m=dk^{2}m
Multiply k and k to get k^{2}.
1200msa=dmk^{2}
The equation is in standard form.
\frac{1200msa}{1200ms}=\frac{dmk^{2}}{1200ms}
Divide both sides by 1200sm.
a=\frac{dmk^{2}}{1200ms}
Dividing by 1200sm undoes the multiplication by 1200sm.
a=\frac{dk^{2}}{1200s}
Divide dk^{2}m by 1200sm.
a=\frac{dk^{2}}{1200s}\text{, }a\neq 0
Variable a cannot be equal to 0.
as\times 1200m=dkkm
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by adks, the least common multiple of 1dk,1sa.
as\times 1200m=dk^{2}m
Multiply k and k to get k^{2}.
dk^{2}m=as\times 1200m
Swap sides so that all variable terms are on the left hand side.
mk^{2}d=1200ams
The equation is in standard form.
\frac{mk^{2}d}{mk^{2}}=\frac{1200ams}{mk^{2}}
Divide both sides by k^{2}m.
d=\frac{1200ams}{mk^{2}}
Dividing by k^{2}m undoes the multiplication by k^{2}m.
d=\frac{1200as}{k^{2}}
Divide 1200asm by k^{2}m.
d=\frac{1200as}{k^{2}}\text{, }d\neq 0
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}