Solve for a
a=-10\sqrt{47}i+10\approx 10-68.556546004i
a=10+10\sqrt{47}i\approx 10+68.556546004i
Share
Copied to clipboard
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
Variable a cannot be equal to any of the values 0,20 since division by zero is not defined. Multiply both sides of the equation by a\left(a-20\right), the least common multiple of a,a-20.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
Use the distributive property to multiply a-20 by 1200.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
Use the distributive property to multiply a by a-20.
1200a-24000=a\times 1200+5a^{2}-100a
Use the distributive property to multiply a^{2}-20a by 5.
1200a-24000=1100a+5a^{2}
Combine a\times 1200 and -100a to get 1100a.
1200a-24000-1100a=5a^{2}
Subtract 1100a from both sides.
100a-24000=5a^{2}
Combine 1200a and -1100a to get 100a.
100a-24000-5a^{2}=0
Subtract 5a^{2} from both sides.
-5a^{2}+100a-24000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-100±\sqrt{100^{2}-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 100 for b, and -24000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-100±\sqrt{10000-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
Square 100.
a=\frac{-100±\sqrt{10000+20\left(-24000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
a=\frac{-100±\sqrt{10000-480000}}{2\left(-5\right)}
Multiply 20 times -24000.
a=\frac{-100±\sqrt{-470000}}{2\left(-5\right)}
Add 10000 to -480000.
a=\frac{-100±100\sqrt{47}i}{2\left(-5\right)}
Take the square root of -470000.
a=\frac{-100±100\sqrt{47}i}{-10}
Multiply 2 times -5.
a=\frac{-100+100\sqrt{47}i}{-10}
Now solve the equation a=\frac{-100±100\sqrt{47}i}{-10} when ± is plus. Add -100 to 100i\sqrt{47}.
a=-10\sqrt{47}i+10
Divide -100+100i\sqrt{47} by -10.
a=\frac{-100\sqrt{47}i-100}{-10}
Now solve the equation a=\frac{-100±100\sqrt{47}i}{-10} when ± is minus. Subtract 100i\sqrt{47} from -100.
a=10+10\sqrt{47}i
Divide -100-100i\sqrt{47} by -10.
a=-10\sqrt{47}i+10 a=10+10\sqrt{47}i
The equation is now solved.
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
Variable a cannot be equal to any of the values 0,20 since division by zero is not defined. Multiply both sides of the equation by a\left(a-20\right), the least common multiple of a,a-20.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
Use the distributive property to multiply a-20 by 1200.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
Use the distributive property to multiply a by a-20.
1200a-24000=a\times 1200+5a^{2}-100a
Use the distributive property to multiply a^{2}-20a by 5.
1200a-24000=1100a+5a^{2}
Combine a\times 1200 and -100a to get 1100a.
1200a-24000-1100a=5a^{2}
Subtract 1100a from both sides.
100a-24000=5a^{2}
Combine 1200a and -1100a to get 100a.
100a-24000-5a^{2}=0
Subtract 5a^{2} from both sides.
100a-5a^{2}=24000
Add 24000 to both sides. Anything plus zero gives itself.
-5a^{2}+100a=24000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5a^{2}+100a}{-5}=\frac{24000}{-5}
Divide both sides by -5.
a^{2}+\frac{100}{-5}a=\frac{24000}{-5}
Dividing by -5 undoes the multiplication by -5.
a^{2}-20a=\frac{24000}{-5}
Divide 100 by -5.
a^{2}-20a=-4800
Divide 24000 by -5.
a^{2}-20a+\left(-10\right)^{2}=-4800+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-20a+100=-4800+100
Square -10.
a^{2}-20a+100=-4700
Add -4800 to 100.
\left(a-10\right)^{2}=-4700
Factor a^{2}-20a+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-10\right)^{2}}=\sqrt{-4700}
Take the square root of both sides of the equation.
a-10=10\sqrt{47}i a-10=-10\sqrt{47}i
Simplify.
a=10+10\sqrt{47}i a=-10\sqrt{47}i+10
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}