Evaluate
\frac{20}{3}\approx 6.666666667
Factor
\frac{2 ^ {2} \cdot 5}{3} = 6\frac{2}{3} = 6.666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1200}\\\end{array}
Use the 1^{st} digit 1 from dividend 1200
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1200}\\\end{array}
Since 1 is less than 180, use the next digit 2 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1200
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1200}\\\end{array}
Since 12 is less than 180, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1200
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1200}\\\end{array}
Since 120 is less than 180, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1200}\\\end{array}
Use the 4^{th} digit 0 from dividend 1200
\begin{array}{l}\phantom{180)}0006\phantom{8}\\180\overline{)1200}\\\phantom{180)}\underline{\phantom{}1080\phantom{}}\\\phantom{180)9}120\\\end{array}
Find closest multiple of 180 to 1200. We see that 6 \times 180 = 1080 is the nearest. Now subtract 1080 from 1200 to get reminder 120. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }120
Since 120 is less than 180, stop the division. The reminder is 120. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}