Solve for x
x = \frac{\sqrt{889} + 13}{3} \approx 14.272034344
x=\frac{13-\sqrt{889}}{3}\approx -5.605367677
Graph
Share
Copied to clipboard
\left(x-2\right)\times 120=x\times 140+x\left(x-2\right)\left(-3\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x,x-2.
120x-240=x\times 140+x\left(x-2\right)\left(-3\right)
Use the distributive property to multiply x-2 by 120.
120x-240=x\times 140+\left(x^{2}-2x\right)\left(-3\right)
Use the distributive property to multiply x by x-2.
120x-240=x\times 140-3x^{2}+6x
Use the distributive property to multiply x^{2}-2x by -3.
120x-240=146x-3x^{2}
Combine x\times 140 and 6x to get 146x.
120x-240-146x=-3x^{2}
Subtract 146x from both sides.
-26x-240=-3x^{2}
Combine 120x and -146x to get -26x.
-26x-240+3x^{2}=0
Add 3x^{2} to both sides.
3x^{2}-26x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 3\left(-240\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -26 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 3\left(-240\right)}}{2\times 3}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-12\left(-240\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-26\right)±\sqrt{676+2880}}{2\times 3}
Multiply -12 times -240.
x=\frac{-\left(-26\right)±\sqrt{3556}}{2\times 3}
Add 676 to 2880.
x=\frac{-\left(-26\right)±2\sqrt{889}}{2\times 3}
Take the square root of 3556.
x=\frac{26±2\sqrt{889}}{2\times 3}
The opposite of -26 is 26.
x=\frac{26±2\sqrt{889}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{889}+26}{6}
Now solve the equation x=\frac{26±2\sqrt{889}}{6} when ± is plus. Add 26 to 2\sqrt{889}.
x=\frac{\sqrt{889}+13}{3}
Divide 26+2\sqrt{889} by 6.
x=\frac{26-2\sqrt{889}}{6}
Now solve the equation x=\frac{26±2\sqrt{889}}{6} when ± is minus. Subtract 2\sqrt{889} from 26.
x=\frac{13-\sqrt{889}}{3}
Divide 26-2\sqrt{889} by 6.
x=\frac{\sqrt{889}+13}{3} x=\frac{13-\sqrt{889}}{3}
The equation is now solved.
\left(x-2\right)\times 120=x\times 140+x\left(x-2\right)\left(-3\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x,x-2.
120x-240=x\times 140+x\left(x-2\right)\left(-3\right)
Use the distributive property to multiply x-2 by 120.
120x-240=x\times 140+\left(x^{2}-2x\right)\left(-3\right)
Use the distributive property to multiply x by x-2.
120x-240=x\times 140-3x^{2}+6x
Use the distributive property to multiply x^{2}-2x by -3.
120x-240=146x-3x^{2}
Combine x\times 140 and 6x to get 146x.
120x-240-146x=-3x^{2}
Subtract 146x from both sides.
-26x-240=-3x^{2}
Combine 120x and -146x to get -26x.
-26x-240+3x^{2}=0
Add 3x^{2} to both sides.
-26x+3x^{2}=240
Add 240 to both sides. Anything plus zero gives itself.
3x^{2}-26x=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-26x}{3}=\frac{240}{3}
Divide both sides by 3.
x^{2}-\frac{26}{3}x=\frac{240}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{26}{3}x=80
Divide 240 by 3.
x^{2}-\frac{26}{3}x+\left(-\frac{13}{3}\right)^{2}=80+\left(-\frac{13}{3}\right)^{2}
Divide -\frac{26}{3}, the coefficient of the x term, by 2 to get -\frac{13}{3}. Then add the square of -\frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{26}{3}x+\frac{169}{9}=80+\frac{169}{9}
Square -\frac{13}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{26}{3}x+\frac{169}{9}=\frac{889}{9}
Add 80 to \frac{169}{9}.
\left(x-\frac{13}{3}\right)^{2}=\frac{889}{9}
Factor x^{2}-\frac{26}{3}x+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{3}\right)^{2}}=\sqrt{\frac{889}{9}}
Take the square root of both sides of the equation.
x-\frac{13}{3}=\frac{\sqrt{889}}{3} x-\frac{13}{3}=-\frac{\sqrt{889}}{3}
Simplify.
x=\frac{\sqrt{889}+13}{3} x=\frac{13-\sqrt{889}}{3}
Add \frac{13}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}