Evaluate
\frac{30}{11}\approx 2.727272727
Factor
\frac{2 \cdot 3 \cdot 5}{11} = 2\frac{8}{11} = 2.727272727272727
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)120}\\\end{array}
Use the 1^{st} digit 1 from dividend 120
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)120}\\\end{array}
Since 1 is less than 44, use the next digit 2 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)120}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120
\begin{array}{l}\phantom{44)}00\phantom{4}\\44\overline{)120}\\\end{array}
Since 12 is less than 44, use the next digit 0 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{44)}00\phantom{5}\\44\overline{)120}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120
\begin{array}{l}\phantom{44)}002\phantom{6}\\44\overline{)120}\\\phantom{44)}\underline{\phantom{9}88\phantom{}}\\\phantom{44)9}32\\\end{array}
Find closest multiple of 44 to 120. We see that 2 \times 44 = 88 is the nearest. Now subtract 88 from 120 to get reminder 32. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }32
Since 32 is less than 44, stop the division. The reminder is 32. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}