Solve for x
x=-10
Graph
Share
Copied to clipboard
-\left(30+x\right)\times 120=\left(x-30\right)\times 60
Variable x cannot be equal to any of the values -30,30 since division by zero is not defined. Multiply both sides of the equation by \left(x-30\right)\left(x+30\right), the least common multiple of 30-x,30+x.
\left(-30-x\right)\times 120=\left(x-30\right)\times 60
To find the opposite of 30+x, find the opposite of each term.
-3600-120x=\left(x-30\right)\times 60
Use the distributive property to multiply -30-x by 120.
-3600-120x=60x-1800
Use the distributive property to multiply x-30 by 60.
-3600-120x-60x=-1800
Subtract 60x from both sides.
-3600-180x=-1800
Combine -120x and -60x to get -180x.
-180x=-1800+3600
Add 3600 to both sides.
-180x=1800
Add -1800 and 3600 to get 1800.
x=\frac{1800}{-180}
Divide both sides by -180.
x=-10
Divide 1800 by -180 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}