Evaluate
\frac{4y^{6}}{25x^{2}}
Differentiate w.r.t. x
-\frac{8y^{6}}{25x^{3}}
Share
Copied to clipboard
\frac{12x^{9}y^{9}}{15x^{11}y\times 5y^{2}}
To multiply powers of the same base, add their exponents. Add 7 and 4 to get 11.
\frac{12x^{9}y^{9}}{15x^{11}y^{3}\times 5}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{4y^{6}}{5\times 5x^{2}}
Cancel out 3y^{3}x^{9} in both numerator and denominator.
\frac{4y^{6}}{25x^{2}}
Multiply 5 and 5 to get 25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12y^{9}}{75y^{3}x^{4}}x^{9-7})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4y^{6}}{25x^{4}}x^{2})
Do the arithmetic.
2\times \frac{4y^{6}}{25x^{4}}x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{8y^{6}}{25x^{4}}x^{1}
Do the arithmetic.
\frac{8y^{6}}{25x^{4}}x
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}