Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4\left(3x-4\right)x^{2}}{2x\left(3x-2\right)}\times \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}
Factor the expressions that are not already factored in \frac{12x^{3}-16x^{2}}{6x^{2}-4x}.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{3\left(3x-2\right)x^{2}}{2\left(3x-4\right)x^{2}}
Factor the expressions that are not already factored in \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{3\left(3x-2\right)}{2\left(3x-4\right)}
Cancel out x^{2} in both numerator and denominator.
\frac{2x\left(3x-4\right)\times 3\left(3x-2\right)}{\left(3x-2\right)\times 2\left(3x-4\right)}
Multiply \frac{2x\left(3x-4\right)}{3x-2} times \frac{3\left(3x-2\right)}{2\left(3x-4\right)} by multiplying numerator times numerator and denominator times denominator.
3x
Cancel out 2\left(3x-4\right)\left(3x-2\right) in both numerator and denominator.
\frac{4\left(3x-4\right)x^{2}}{2x\left(3x-2\right)}\times \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}
Factor the expressions that are not already factored in \frac{12x^{3}-16x^{2}}{6x^{2}-4x}.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}
Cancel out 2x in both numerator and denominator.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{3\left(3x-2\right)x^{2}}{2\left(3x-4\right)x^{2}}
Factor the expressions that are not already factored in \frac{9x^{3}-6x^{2}}{6x^{3}-8x^{2}}.
\frac{2x\left(3x-4\right)}{3x-2}\times \frac{3\left(3x-2\right)}{2\left(3x-4\right)}
Cancel out x^{2} in both numerator and denominator.
\frac{2x\left(3x-4\right)\times 3\left(3x-2\right)}{\left(3x-2\right)\times 2\left(3x-4\right)}
Multiply \frac{2x\left(3x-4\right)}{3x-2} times \frac{3\left(3x-2\right)}{2\left(3x-4\right)} by multiplying numerator times numerator and denominator times denominator.
3x
Cancel out 2\left(3x-4\right)\left(3x-2\right) in both numerator and denominator.