Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(12p^{-11}\right)^{1}\times \frac{1}{4p^{-11}}
Use the rules of exponents to simplify the expression.
12^{1}\left(p^{-11}\right)^{1}\times \frac{1}{4}\times \frac{1}{p^{-11}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
12^{1}\times \frac{1}{4}\left(p^{-11}\right)^{1}\times \frac{1}{p^{-11}}
Use the Commutative Property of Multiplication.
12^{1}\times \frac{1}{4}p^{-11}p^{-11\left(-1\right)}
To raise a power to another power, multiply the exponents.
12^{1}\times \frac{1}{4}p^{-11}p^{11}
Multiply -11 times -1.
12^{1}\times \frac{1}{4}p^{-11+11}
To multiply powers of the same base, add their exponents.
12^{1}\times \frac{1}{4}p^{0}
Add the exponents -11 and 11.
12\times \frac{1}{4}p^{0}
Raise 12 to the power 1.
3p^{0}
Multiply 12 times \frac{1}{4}.
3\times 1
For any term t except 0, t^{0}=1.
3
For any term t, t\times 1=t and 1t=t.