Solve for m
m=\frac{14n}{12-5n}
n\neq \frac{12}{5}
Solve for n
n=\frac{12m}{5m+14}
m\neq -\frac{14}{5}
Share
Copied to clipboard
12m-4n=5mn+10n
Multiply both sides of the equation by 5.
12m-4n-5mn=10n
Subtract 5mn from both sides.
12m-5mn=10n+4n
Add 4n to both sides.
12m-5mn=14n
Combine 10n and 4n to get 14n.
\left(12-5n\right)m=14n
Combine all terms containing m.
\frac{\left(12-5n\right)m}{12-5n}=\frac{14n}{12-5n}
Divide both sides by 12-5n.
m=\frac{14n}{12-5n}
Dividing by 12-5n undoes the multiplication by 12-5n.
12m-4n=5mn+10n
Multiply both sides of the equation by 5.
12m-4n-5mn=10n
Subtract 5mn from both sides.
12m-4n-5mn-10n=0
Subtract 10n from both sides.
12m-14n-5mn=0
Combine -4n and -10n to get -14n.
-14n-5mn=-12m
Subtract 12m from both sides. Anything subtracted from zero gives its negation.
\left(-14-5m\right)n=-12m
Combine all terms containing n.
\left(-5m-14\right)n=-12m
The equation is in standard form.
\frac{\left(-5m-14\right)n}{-5m-14}=-\frac{12m}{-5m-14}
Divide both sides by -14-5m.
n=-\frac{12m}{-5m-14}
Dividing by -14-5m undoes the multiplication by -14-5m.
n=\frac{12m}{5m+14}
Divide -12m by -14-5m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}