Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{12a^{2}-22a+8}{3a}-\frac{\left(3a-4\right)\left(a+2\right)}{2a\left(a+2\right)}
Factor the expressions that are not already factored in \frac{3a^{2}+2a-8}{2a^{2}+4a}.
\frac{12a^{2}-22a+8}{3a}-\frac{3a-4}{2a}
Cancel out a+2 in both numerator and denominator.
\frac{2\left(12a^{2}-22a+8\right)}{6a}-\frac{3\left(3a-4\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{12a^{2}-22a+8}{3a} times \frac{2}{2}. Multiply \frac{3a-4}{2a} times \frac{3}{3}.
\frac{2\left(12a^{2}-22a+8\right)-3\left(3a-4\right)}{6a}
Since \frac{2\left(12a^{2}-22a+8\right)}{6a} and \frac{3\left(3a-4\right)}{6a} have the same denominator, subtract them by subtracting their numerators.
\frac{24a^{2}-44a+16-9a+12}{6a}
Do the multiplications in 2\left(12a^{2}-22a+8\right)-3\left(3a-4\right).
\frac{24a^{2}-53a+28}{6a}
Combine like terms in 24a^{2}-44a+16-9a+12.
\frac{12a^{2}-22a+8}{3a}-\frac{\left(3a-4\right)\left(a+2\right)}{2a\left(a+2\right)}
Factor the expressions that are not already factored in \frac{3a^{2}+2a-8}{2a^{2}+4a}.
\frac{12a^{2}-22a+8}{3a}-\frac{3a-4}{2a}
Cancel out a+2 in both numerator and denominator.
\frac{2\left(12a^{2}-22a+8\right)}{6a}-\frac{3\left(3a-4\right)}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 2a is 6a. Multiply \frac{12a^{2}-22a+8}{3a} times \frac{2}{2}. Multiply \frac{3a-4}{2a} times \frac{3}{3}.
\frac{2\left(12a^{2}-22a+8\right)-3\left(3a-4\right)}{6a}
Since \frac{2\left(12a^{2}-22a+8\right)}{6a} and \frac{3\left(3a-4\right)}{6a} have the same denominator, subtract them by subtracting their numerators.
\frac{24a^{2}-44a+16-9a+12}{6a}
Do the multiplications in 2\left(12a^{2}-22a+8\right)-3\left(3a-4\right).
\frac{24a^{2}-53a+28}{6a}
Combine like terms in 24a^{2}-44a+16-9a+12.