Solve for K
K=\frac{\sqrt{6}}{6}\approx 0.40824829
K=-\frac{\sqrt{2}}{6}\approx -0.23570226
Share
Copied to clipboard
\left(\frac{12K^{2}-1}{12K^{2}+1}\right)^{2}=\left(K\sqrt{\frac{3}{3K^{2}+4}}\right)^{2}
Square both sides of the equation.
\frac{\left(12K^{2}-1\right)^{2}}{\left(12K^{2}+1\right)^{2}}=\left(K\sqrt{\frac{3}{3K^{2}+4}}\right)^{2}
To raise \frac{12K^{2}-1}{12K^{2}+1} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(12K^{2}-1\right)^{2}}{\left(12K^{2}+1\right)^{2}}=K^{2}\left(\sqrt{\frac{3}{3K^{2}+4}}\right)^{2}
Expand \left(K\sqrt{\frac{3}{3K^{2}+4}}\right)^{2}.
\frac{\left(12K^{2}-1\right)^{2}}{\left(12K^{2}+1\right)^{2}}=K^{2}\times \frac{3}{3K^{2}+4}
Calculate \sqrt{\frac{3}{3K^{2}+4}} to the power of 2 and get \frac{3}{3K^{2}+4}.
\frac{\left(12K^{2}-1\right)^{2}}{\left(12K^{2}+1\right)^{2}}=\frac{K^{2}\times 3}{3K^{2}+4}
Express K^{2}\times \frac{3}{3K^{2}+4} as a single fraction.
\frac{144\left(K^{2}\right)^{2}-24K^{2}+1}{\left(12K^{2}+1\right)^{2}}=\frac{K^{2}\times 3}{3K^{2}+4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12K^{2}-1\right)^{2}.
\frac{144K^{4}-24K^{2}+1}{\left(12K^{2}+1\right)^{2}}=\frac{K^{2}\times 3}{3K^{2}+4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{144K^{4}-24K^{2}+1}{144\left(K^{2}\right)^{2}+24K^{2}+1}=\frac{K^{2}\times 3}{3K^{2}+4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12K^{2}+1\right)^{2}.
\frac{144K^{4}-24K^{2}+1}{144K^{4}+24K^{2}+1}=\frac{K^{2}\times 3}{3K^{2}+4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(3K^{2}+4\right)\left(144K^{4}-24K^{2}+1\right)=\left(12K^{2}+1\right)^{2}K^{2}\times 3
Multiply both sides of the equation by \left(3K^{2}+4\right)\left(12K^{2}+1\right)^{2}, the least common multiple of 144K^{4}+24K^{2}+1,3K^{2}+4.
\left(3K^{2}+4\right)\left(144K^{4}-24K^{2}+1\right)=3K^{2}\left(12K^{2}+1\right)^{2}
Reorder the terms.
432K^{6}+504K^{4}-93K^{2}+4=3K^{2}\left(12K^{2}+1\right)^{2}
Use the distributive property to multiply 3K^{2}+4 by 144K^{4}-24K^{2}+1 and combine like terms.
432K^{6}+504K^{4}-93K^{2}+4=3K^{2}\left(144\left(K^{2}\right)^{2}+24K^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12K^{2}+1\right)^{2}.
432K^{6}+504K^{4}-93K^{2}+4=3K^{2}\left(144K^{4}+24K^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
432K^{6}+504K^{4}-93K^{2}+4=432K^{6}+72K^{4}+3K^{2}
Use the distributive property to multiply 3K^{2} by 144K^{4}+24K^{2}+1.
432K^{6}+504K^{4}-93K^{2}+4-432K^{6}=72K^{4}+3K^{2}
Subtract 432K^{6} from both sides.
504K^{4}-93K^{2}+4=72K^{4}+3K^{2}
Combine 432K^{6} and -432K^{6} to get 0.
504K^{4}-93K^{2}+4-72K^{4}=3K^{2}
Subtract 72K^{4} from both sides.
432K^{4}-93K^{2}+4=3K^{2}
Combine 504K^{4} and -72K^{4} to get 432K^{4}.
432K^{4}-93K^{2}+4-3K^{2}=0
Subtract 3K^{2} from both sides.
432K^{4}-96K^{2}+4=0
Combine -93K^{2} and -3K^{2} to get -96K^{2}.
432t^{2}-96t+4=0
Substitute t for K^{2}.
t=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\times 432\times 4}}{2\times 432}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 432 for a, -96 for b, and 4 for c in the quadratic formula.
t=\frac{96±48}{864}
Do the calculations.
t=\frac{1}{6} t=\frac{1}{18}
Solve the equation t=\frac{96±48}{864} when ± is plus and when ± is minus.
K=\frac{\sqrt{6}}{6} K=-\frac{\sqrt{6}}{6} K=\frac{\sqrt{2}}{6} K=-\frac{\sqrt{2}}{6}
Since K=t^{2}, the solutions are obtained by evaluating K=±\sqrt{t} for each t.
\frac{12\times \left(\frac{\sqrt{6}}{6}\right)^{2}-1}{12\times \left(\frac{\sqrt{6}}{6}\right)^{2}+1}=\frac{\sqrt{6}}{6}\sqrt{\frac{3}{3\times \left(\frac{\sqrt{6}}{6}\right)^{2}+4}}
Substitute \frac{\sqrt{6}}{6} for K in the equation \frac{12K^{2}-1}{12K^{2}+1}=K\sqrt{\frac{3}{3K^{2}+4}}.
\frac{1}{3}=\frac{1}{3}
Simplify. The value K=\frac{\sqrt{6}}{6} satisfies the equation.
\frac{12\left(-\frac{\sqrt{6}}{6}\right)^{2}-1}{12\left(-\frac{\sqrt{6}}{6}\right)^{2}+1}=\left(-\frac{\sqrt{6}}{6}\right)\sqrt{\frac{3}{3\left(-\frac{\sqrt{6}}{6}\right)^{2}+4}}
Substitute -\frac{\sqrt{6}}{6} for K in the equation \frac{12K^{2}-1}{12K^{2}+1}=K\sqrt{\frac{3}{3K^{2}+4}}.
\frac{1}{3}=-\frac{1}{3}
Simplify. The value K=-\frac{\sqrt{6}}{6} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{12\times \left(\frac{\sqrt{2}}{6}\right)^{2}-1}{12\times \left(\frac{\sqrt{2}}{6}\right)^{2}+1}=\frac{\sqrt{2}}{6}\sqrt{\frac{3}{3\times \left(\frac{\sqrt{2}}{6}\right)^{2}+4}}
Substitute \frac{\sqrt{2}}{6} for K in the equation \frac{12K^{2}-1}{12K^{2}+1}=K\sqrt{\frac{3}{3K^{2}+4}}.
-\frac{1}{5}=\frac{1}{5}
Simplify. The value K=\frac{\sqrt{2}}{6} does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{12\left(-\frac{\sqrt{2}}{6}\right)^{2}-1}{12\left(-\frac{\sqrt{2}}{6}\right)^{2}+1}=\left(-\frac{\sqrt{2}}{6}\right)\sqrt{\frac{3}{3\left(-\frac{\sqrt{2}}{6}\right)^{2}+4}}
Substitute -\frac{\sqrt{2}}{6} for K in the equation \frac{12K^{2}-1}{12K^{2}+1}=K\sqrt{\frac{3}{3K^{2}+4}}.
-\frac{1}{5}=-\frac{1}{5}
Simplify. The value K=-\frac{\sqrt{2}}{6} satisfies the equation.
K=\frac{\sqrt{6}}{6} K=-\frac{\sqrt{2}}{6}
List all solutions of \frac{12K^{2}-1}{12K^{2}+1}=\sqrt{\frac{3}{3K^{2}+4}}K.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}