Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(12-i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-4i.
\frac{\left(12-i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-i\right)\left(7-4i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4i^{2}\right)}{65}
Multiply complex numbers 12-i and 7-4i like you multiply binomials.
\frac{12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right)}{65}
By definition, i^{2} is -1.
\frac{84-48i-7i-4}{65}
Do the multiplications in 12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right).
\frac{84-4+\left(-48-7\right)i}{65}
Combine the real and imaginary parts in 84-48i-7i-4.
\frac{80-55i}{65}
Do the additions in 84-4+\left(-48-7\right)i.
\frac{16}{13}-\frac{11}{13}i
Divide 80-55i by 65 to get \frac{16}{13}-\frac{11}{13}i.
Re(\frac{\left(12-i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)})
Multiply both numerator and denominator of \frac{12-i}{7+4i} by the complex conjugate of the denominator, 7-4i.
Re(\frac{\left(12-i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(12-i\right)\left(7-4i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4i^{2}\right)}{65})
Multiply complex numbers 12-i and 7-4i like you multiply binomials.
Re(\frac{12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right)}{65})
By definition, i^{2} is -1.
Re(\frac{84-48i-7i-4}{65})
Do the multiplications in 12\times 7+12\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right).
Re(\frac{84-4+\left(-48-7\right)i}{65})
Combine the real and imaginary parts in 84-48i-7i-4.
Re(\frac{80-55i}{65})
Do the additions in 84-4+\left(-48-7\right)i.
Re(\frac{16}{13}-\frac{11}{13}i)
Divide 80-55i by 65 to get \frac{16}{13}-\frac{11}{13}i.
\frac{16}{13}
The real part of \frac{16}{13}-\frac{11}{13}i is \frac{16}{13}.