Solve for x (complex solution)
x=\sqrt{\sqrt{34}+5}\approx 3.291041157
x=-\sqrt{\sqrt{34}+5}\approx -3.291041157
x=-i\sqrt{\sqrt{34}-5}\approx -0-0.911565628i
x=i\sqrt{\sqrt{34}-5}\approx 0.911565628i
Solve for x
x=\sqrt{\sqrt{34}+5}\approx 3.291041157
x=-\sqrt{\sqrt{34}+5}\approx -3.291041157
Graph
Share
Copied to clipboard
12+x^{2}\times 14=3+x^{2}\times 4+x^{2}x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
12+x^{2}\times 14=3+x^{2}\times 4+x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
12+x^{2}\times 14-3=x^{2}\times 4+x^{4}
Subtract 3 from both sides.
9+x^{2}\times 14=x^{2}\times 4+x^{4}
Subtract 3 from 12 to get 9.
9+x^{2}\times 14-x^{2}\times 4=x^{4}
Subtract x^{2}\times 4 from both sides.
9+10x^{2}=x^{4}
Combine x^{2}\times 14 and -x^{2}\times 4 to get 10x^{2}.
9+10x^{2}-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+10t+9=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\times 9}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 10 for b, and 9 for c in the quadratic formula.
t=\frac{-10±2\sqrt{34}}{-2}
Do the calculations.
t=5-\sqrt{34} t=\sqrt{34}+5
Solve the equation t=\frac{-10±2\sqrt{34}}{-2} when ± is plus and when ± is minus.
x=-i\sqrt{-\left(5-\sqrt{34}\right)} x=i\sqrt{-\left(5-\sqrt{34}\right)} x=-\sqrt{\sqrt{34}+5} x=\sqrt{\sqrt{34}+5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
12+x^{2}\times 14=3+x^{2}\times 4+x^{2}x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
12+x^{2}\times 14=3+x^{2}\times 4+x^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
12+x^{2}\times 14-3=x^{2}\times 4+x^{4}
Subtract 3 from both sides.
9+x^{2}\times 14=x^{2}\times 4+x^{4}
Subtract 3 from 12 to get 9.
9+x^{2}\times 14-x^{2}\times 4=x^{4}
Subtract x^{2}\times 4 from both sides.
9+10x^{2}=x^{4}
Combine x^{2}\times 14 and -x^{2}\times 4 to get 10x^{2}.
9+10x^{2}-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+10t+9=0
Substitute t for x^{2}.
t=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\times 9}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 10 for b, and 9 for c in the quadratic formula.
t=\frac{-10±2\sqrt{34}}{-2}
Do the calculations.
t=5-\sqrt{34} t=\sqrt{34}+5
Solve the equation t=\frac{-10±2\sqrt{34}}{-2} when ± is plus and when ± is minus.
x=\sqrt{\sqrt{34}+5} x=-\sqrt{\sqrt{34}+5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}