Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

\frac{12}{\left(w-23\right)\left(w+1\right)}-\frac{11}{\left(w-23\right)\left(w-1\right)}
Factor w^{2}-22w-23. Factor w^{2}-24w+23.
\frac{12\left(w-1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}-\frac{11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w-23\right)\left(w+1\right) and \left(w-23\right)\left(w-1\right) is \left(w-23\right)\left(w-1\right)\left(w+1\right). Multiply \frac{12}{\left(w-23\right)\left(w+1\right)} times \frac{w-1}{w-1}. Multiply \frac{11}{\left(w-23\right)\left(w-1\right)} times \frac{w+1}{w+1}.
\frac{12\left(w-1\right)-11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}
Since \frac{12\left(w-1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)} and \frac{11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12w-12-11w-11}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}
Do the multiplications in 12\left(w-1\right)-11\left(w+1\right).
\frac{w-23}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}
Combine like terms in 12w-12-11w-11.
\frac{1}{\left(w-1\right)\left(w+1\right)}
Cancel out w-23 in both numerator and denominator.
\frac{1}{w^{2}-1}
Expand \left(w-1\right)\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{12}{\left(w-23\right)\left(w+1\right)}-\frac{11}{\left(w-23\right)\left(w-1\right)})
Factor w^{2}-22w-23. Factor w^{2}-24w+23.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{12\left(w-1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)}-\frac{11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w-23\right)\left(w+1\right) and \left(w-23\right)\left(w-1\right) is \left(w-23\right)\left(w-1\right)\left(w+1\right). Multiply \frac{12}{\left(w-23\right)\left(w+1\right)} times \frac{w-1}{w-1}. Multiply \frac{11}{\left(w-23\right)\left(w-1\right)} times \frac{w+1}{w+1}.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{12\left(w-1\right)-11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)})
Since \frac{12\left(w-1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)} and \frac{11\left(w+1\right)}{\left(w-23\right)\left(w-1\right)\left(w+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{12w-12-11w-11}{\left(w-23\right)\left(w-1\right)\left(w+1\right)})
Do the multiplications in 12\left(w-1\right)-11\left(w+1\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{w-23}{\left(w-23\right)\left(w-1\right)\left(w+1\right)})
Combine like terms in 12w-12-11w-11.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{1}{\left(w-1\right)\left(w+1\right)})
Cancel out w-23 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{1}{w^{2}-1})
Consider \left(w-1\right)\left(w+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-\left(w^{2}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-1)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(w^{2}-1\right)^{-2}\times 2w^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-2w^{1}\left(w^{2}-1\right)^{-2}
Simplify.
-2w\left(w^{2}-1\right)^{-2}
For any term t, t^{1}=t.