Solve for p
p=\frac{14+2\sqrt{5}i}{3}\approx 4.666666667+1.490711985i
p=\frac{-2\sqrt{5}i+14}{3}\approx 4.666666667-1.490711985i
Share
Copied to clipboard
p\times 12=p\left(3p-13\right)-\left(p-24\right)\times 3
Variable p cannot be equal to any of the values 0,24 since division by zero is not defined. Multiply both sides of the equation by p\left(p-24\right), the least common multiple of p-24,p.
p\times 12=3p^{2}-13p-\left(p-24\right)\times 3
Use the distributive property to multiply p by 3p-13.
p\times 12=3p^{2}-13p-\left(3p-72\right)
Use the distributive property to multiply p-24 by 3.
p\times 12=3p^{2}-13p-3p+72
To find the opposite of 3p-72, find the opposite of each term.
p\times 12=3p^{2}-16p+72
Combine -13p and -3p to get -16p.
p\times 12-3p^{2}=-16p+72
Subtract 3p^{2} from both sides.
p\times 12-3p^{2}+16p=72
Add 16p to both sides.
28p-3p^{2}=72
Combine p\times 12 and 16p to get 28p.
28p-3p^{2}-72=0
Subtract 72 from both sides.
-3p^{2}+28p-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-28±\sqrt{28^{2}-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 28 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-28±\sqrt{784-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
Square 28.
p=\frac{-28±\sqrt{784+12\left(-72\right)}}{2\left(-3\right)}
Multiply -4 times -3.
p=\frac{-28±\sqrt{784-864}}{2\left(-3\right)}
Multiply 12 times -72.
p=\frac{-28±\sqrt{-80}}{2\left(-3\right)}
Add 784 to -864.
p=\frac{-28±4\sqrt{5}i}{2\left(-3\right)}
Take the square root of -80.
p=\frac{-28±4\sqrt{5}i}{-6}
Multiply 2 times -3.
p=\frac{-28+4\sqrt{5}i}{-6}
Now solve the equation p=\frac{-28±4\sqrt{5}i}{-6} when ± is plus. Add -28 to 4i\sqrt{5}.
p=\frac{-2\sqrt{5}i+14}{3}
Divide -28+4i\sqrt{5} by -6.
p=\frac{-4\sqrt{5}i-28}{-6}
Now solve the equation p=\frac{-28±4\sqrt{5}i}{-6} when ± is minus. Subtract 4i\sqrt{5} from -28.
p=\frac{14+2\sqrt{5}i}{3}
Divide -28-4i\sqrt{5} by -6.
p=\frac{-2\sqrt{5}i+14}{3} p=\frac{14+2\sqrt{5}i}{3}
The equation is now solved.
p\times 12=p\left(3p-13\right)-\left(p-24\right)\times 3
Variable p cannot be equal to any of the values 0,24 since division by zero is not defined. Multiply both sides of the equation by p\left(p-24\right), the least common multiple of p-24,p.
p\times 12=3p^{2}-13p-\left(p-24\right)\times 3
Use the distributive property to multiply p by 3p-13.
p\times 12=3p^{2}-13p-\left(3p-72\right)
Use the distributive property to multiply p-24 by 3.
p\times 12=3p^{2}-13p-3p+72
To find the opposite of 3p-72, find the opposite of each term.
p\times 12=3p^{2}-16p+72
Combine -13p and -3p to get -16p.
p\times 12-3p^{2}=-16p+72
Subtract 3p^{2} from both sides.
p\times 12-3p^{2}+16p=72
Add 16p to both sides.
28p-3p^{2}=72
Combine p\times 12 and 16p to get 28p.
-3p^{2}+28p=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3p^{2}+28p}{-3}=\frac{72}{-3}
Divide both sides by -3.
p^{2}+\frac{28}{-3}p=\frac{72}{-3}
Dividing by -3 undoes the multiplication by -3.
p^{2}-\frac{28}{3}p=\frac{72}{-3}
Divide 28 by -3.
p^{2}-\frac{28}{3}p=-24
Divide 72 by -3.
p^{2}-\frac{28}{3}p+\left(-\frac{14}{3}\right)^{2}=-24+\left(-\frac{14}{3}\right)^{2}
Divide -\frac{28}{3}, the coefficient of the x term, by 2 to get -\frac{14}{3}. Then add the square of -\frac{14}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{28}{3}p+\frac{196}{9}=-24+\frac{196}{9}
Square -\frac{14}{3} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{28}{3}p+\frac{196}{9}=-\frac{20}{9}
Add -24 to \frac{196}{9}.
\left(p-\frac{14}{3}\right)^{2}=-\frac{20}{9}
Factor p^{2}-\frac{28}{3}p+\frac{196}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{14}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Take the square root of both sides of the equation.
p-\frac{14}{3}=\frac{2\sqrt{5}i}{3} p-\frac{14}{3}=-\frac{2\sqrt{5}i}{3}
Simplify.
p=\frac{14+2\sqrt{5}i}{3} p=\frac{-2\sqrt{5}i+14}{3}
Add \frac{14}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}