Solve for b
b = -\frac{57}{11} = -5\frac{2}{11} \approx -5.181818182
Share
Copied to clipboard
\frac{12}{7}b+\frac{12}{7}\left(-5\right)=8b+24
Use the distributive property to multiply \frac{12}{7} by b-5.
\frac{12}{7}b+\frac{12\left(-5\right)}{7}=8b+24
Express \frac{12}{7}\left(-5\right) as a single fraction.
\frac{12}{7}b+\frac{-60}{7}=8b+24
Multiply 12 and -5 to get -60.
\frac{12}{7}b-\frac{60}{7}=8b+24
Fraction \frac{-60}{7} can be rewritten as -\frac{60}{7} by extracting the negative sign.
\frac{12}{7}b-\frac{60}{7}-8b=24
Subtract 8b from both sides.
-\frac{44}{7}b-\frac{60}{7}=24
Combine \frac{12}{7}b and -8b to get -\frac{44}{7}b.
-\frac{44}{7}b=24+\frac{60}{7}
Add \frac{60}{7} to both sides.
-\frac{44}{7}b=\frac{168}{7}+\frac{60}{7}
Convert 24 to fraction \frac{168}{7}.
-\frac{44}{7}b=\frac{168+60}{7}
Since \frac{168}{7} and \frac{60}{7} have the same denominator, add them by adding their numerators.
-\frac{44}{7}b=\frac{228}{7}
Add 168 and 60 to get 228.
b=\frac{228}{7}\left(-\frac{7}{44}\right)
Multiply both sides by -\frac{7}{44}, the reciprocal of -\frac{44}{7}.
b=\frac{228\left(-7\right)}{7\times 44}
Multiply \frac{228}{7} times -\frac{7}{44} by multiplying numerator times numerator and denominator times denominator.
b=\frac{-1596}{308}
Do the multiplications in the fraction \frac{228\left(-7\right)}{7\times 44}.
b=-\frac{57}{11}
Reduce the fraction \frac{-1596}{308} to lowest terms by extracting and canceling out 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}