Solve for x
x\leq 35
Graph
Share
Copied to clipboard
\frac{12}{5}x-4\geq \frac{5}{2}x+\frac{5}{2}\left(-3\right)
Use the distributive property to multiply \frac{5}{2} by x-3.
\frac{12}{5}x-4\geq \frac{5}{2}x+\frac{5\left(-3\right)}{2}
Express \frac{5}{2}\left(-3\right) as a single fraction.
\frac{12}{5}x-4\geq \frac{5}{2}x+\frac{-15}{2}
Multiply 5 and -3 to get -15.
\frac{12}{5}x-4\geq \frac{5}{2}x-\frac{15}{2}
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
\frac{12}{5}x-4-\frac{5}{2}x\geq -\frac{15}{2}
Subtract \frac{5}{2}x from both sides.
-\frac{1}{10}x-4\geq -\frac{15}{2}
Combine \frac{12}{5}x and -\frac{5}{2}x to get -\frac{1}{10}x.
-\frac{1}{10}x\geq -\frac{15}{2}+4
Add 4 to both sides.
-\frac{1}{10}x\geq -\frac{15}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
-\frac{1}{10}x\geq \frac{-15+8}{2}
Since -\frac{15}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
-\frac{1}{10}x\geq -\frac{7}{2}
Add -15 and 8 to get -7.
x\leq -\frac{7}{2}\left(-10\right)
Multiply both sides by -10, the reciprocal of -\frac{1}{10}. Since -\frac{1}{10} is negative, the inequality direction is changed.
x\leq \frac{-7\left(-10\right)}{2}
Express -\frac{7}{2}\left(-10\right) as a single fraction.
x\leq \frac{70}{2}
Multiply -7 and -10 to get 70.
x\leq 35
Divide 70 by 2 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}