Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\times 6\sqrt{33}}{5\times 11}+\frac{3}{5}\times \frac{5.4}{11}
Multiply \frac{12}{5} times \frac{6\sqrt{33}}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{12\times 6\sqrt{33}}{5\times 11}+\frac{3}{5}\times \frac{54}{110}
Expand \frac{5.4}{11} by multiplying both numerator and the denominator by 10.
\frac{12\times 6\sqrt{33}}{5\times 11}+\frac{3}{5}\times \frac{27}{55}
Reduce the fraction \frac{54}{110} to lowest terms by extracting and canceling out 2.
\frac{12\times 6\sqrt{33}}{5\times 11}+\frac{3\times 27}{5\times 55}
Multiply \frac{3}{5} times \frac{27}{55} by multiplying numerator times numerator and denominator times denominator.
\frac{12\times 6\sqrt{33}}{5\times 11}+\frac{81}{275}
Do the multiplications in the fraction \frac{3\times 27}{5\times 55}.
\frac{5\times 12\times 6\sqrt{33}}{275}+\frac{81}{275}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\times 11 and 275 is 275. Multiply \frac{12\times 6\sqrt{33}}{5\times 11} times \frac{5}{5}.
\frac{5\times 12\times 6\sqrt{33}+81}{275}
Since \frac{5\times 12\times 6\sqrt{33}}{275} and \frac{81}{275} have the same denominator, add them by adding their numerators.
\frac{360\sqrt{33}+81}{275}
Do the multiplications in 5\times 12\times 6\sqrt{33}+81.