Evaluate
\frac{2\sqrt{5}}{35}+\frac{53}{14}\approx 3.913489599
Factor
\frac{4 \sqrt{5} + 265}{70} = 3.9134895987142735
Share
Copied to clipboard
\frac{12}{5}\times \frac{5}{3}-\frac{\frac{3}{7}}{6}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Divide \frac{12}{5} by \frac{3}{5} by multiplying \frac{12}{5} by the reciprocal of \frac{3}{5}.
\frac{12\times 5}{5\times 3}-\frac{\frac{3}{7}}{6}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Multiply \frac{12}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{3}-\frac{\frac{3}{7}}{6}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Cancel out 5 in both numerator and denominator.
4-\frac{\frac{3}{7}}{6}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Divide 12 by 3 to get 4.
4-\frac{3}{7\times 6}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Express \frac{\frac{3}{7}}{6} as a single fraction.
4-\frac{3}{42}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Multiply 7 and 6 to get 42.
4-\frac{1}{14}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Reduce the fraction \frac{3}{42} to lowest terms by extracting and canceling out 3.
\frac{56}{14}-\frac{1}{14}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Convert 4 to fraction \frac{56}{14}.
\frac{56-1}{14}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Since \frac{56}{14} and \frac{1}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{55}{14}-\frac{1}{7}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Subtract 1 from 56 to get 55.
\frac{55}{14}-\frac{2}{14}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Least common multiple of 14 and 7 is 14. Convert \frac{55}{14} and \frac{1}{7} to fractions with denominator 14.
\frac{55-2}{14}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Since \frac{55}{14} and \frac{2}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{14}+\frac{\sqrt{\frac{3\times 5+1}{5}}}{14}
Subtract 2 from 55 to get 53.
\frac{53}{14}+\frac{\sqrt{\frac{15+1}{5}}}{14}
Multiply 3 and 5 to get 15.
\frac{53}{14}+\frac{\sqrt{\frac{16}{5}}}{14}
Add 15 and 1 to get 16.
\frac{53}{14}+\frac{\frac{\sqrt{16}}{\sqrt{5}}}{14}
Rewrite the square root of the division \sqrt{\frac{16}{5}} as the division of square roots \frac{\sqrt{16}}{\sqrt{5}}.
\frac{53}{14}+\frac{\frac{4}{\sqrt{5}}}{14}
Calculate the square root of 16 and get 4.
\frac{53}{14}+\frac{\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{14}
Rationalize the denominator of \frac{4}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{53}{14}+\frac{\frac{4\sqrt{5}}{5}}{14}
The square of \sqrt{5} is 5.
\frac{53}{14}+\frac{4\sqrt{5}}{5\times 14}
Express \frac{\frac{4\sqrt{5}}{5}}{14} as a single fraction.
\frac{53}{14}+\frac{2\sqrt{5}}{5\times 7}
Cancel out 2 in both numerator and denominator.
\frac{53}{14}+\frac{2\sqrt{5}}{35}
Multiply 5 and 7 to get 35.
\frac{53\times 5}{70}+\frac{2\times 2\sqrt{5}}{70}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 14 and 35 is 70. Multiply \frac{53}{14} times \frac{5}{5}. Multiply \frac{2\sqrt{5}}{35} times \frac{2}{2}.
\frac{53\times 5+2\times 2\sqrt{5}}{70}
Since \frac{53\times 5}{70} and \frac{2\times 2\sqrt{5}}{70} have the same denominator, add them by adding their numerators.
\frac{265+4\sqrt{5}}{70}
Do the multiplications in 53\times 5+2\times 2\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}