Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{12}{5}\times \frac{5}{3}-\frac{\frac{3}{7}}{6}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Divide \frac{12}{5} by \frac{3}{5} by multiplying \frac{12}{5} by the reciprocal of \frac{3}{5}.
\frac{12\times 5}{5\times 3}-\frac{\frac{3}{7}}{6}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Multiply \frac{12}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{3}-\frac{\frac{3}{7}}{6}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Cancel out 5 in both numerator and denominator.
4-\frac{\frac{3}{7}}{6}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Divide 12 by 3 to get 4.
4-\frac{3}{7\times 6}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Express \frac{\frac{3}{7}}{6} as a single fraction.
4-\frac{3}{42}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Multiply 7 and 6 to get 42.
4-\frac{1}{14}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Reduce the fraction \frac{3}{42} to lowest terms by extracting and canceling out 3.
\frac{56}{14}-\frac{1}{14}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Convert 4 to fraction \frac{56}{14}.
\frac{56-1}{14}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Since \frac{56}{14} and \frac{1}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{55}{14}-\frac{1}{\frac{7}{50}}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Subtract 1 from 56 to get 55.
\frac{55}{14}-1\times \frac{50}{7}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Divide 1 by \frac{7}{50} by multiplying 1 by the reciprocal of \frac{7}{50}.
\frac{55}{14}-\frac{50}{7}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Multiply 1 and \frac{50}{7} to get \frac{50}{7}.
\frac{55}{14}-\frac{100}{14}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Least common multiple of 14 and 7 is 14. Convert \frac{55}{14} and \frac{50}{7} to fractions with denominator 14.
\frac{55-100}{14}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Since \frac{55}{14} and \frac{100}{14} have the same denominator, subtract them by subtracting their numerators.
-\frac{45}{14}+\frac{\sqrt{\frac{3}{\frac{1}{3}}}}{14}
Subtract 100 from 55 to get -45.
-\frac{45}{14}+\frac{\sqrt{3\times 3}}{14}
Divide 3 by \frac{1}{3} by multiplying 3 by the reciprocal of \frac{1}{3}.
-\frac{45}{14}+\frac{\sqrt{9}}{14}
Multiply 3 and 3 to get 9.
-\frac{45}{14}+\frac{3}{14}
Calculate the square root of 9 and get 3.
\frac{-45+3}{14}
Since -\frac{45}{14} and \frac{3}{14} have the same denominator, add them by adding their numerators.
\frac{-42}{14}
Add -45 and 3 to get -42.
-3
Divide -42 by 14 to get -3.