Solve for x
x=2
Graph
Share
Copied to clipboard
\left(3x+2\right)\times 12-\left(3x-2\right)\times 8=-\left(2-33x\right)
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(3x+2\right), the least common multiple of 3x-2,3x+2,4-9x^{2}.
36x+24-\left(3x-2\right)\times 8=-\left(2-33x\right)
Use the distributive property to multiply 3x+2 by 12.
36x+24-\left(24x-16\right)=-\left(2-33x\right)
Use the distributive property to multiply 3x-2 by 8.
36x+24-24x+16=-\left(2-33x\right)
To find the opposite of 24x-16, find the opposite of each term.
12x+24+16=-\left(2-33x\right)
Combine 36x and -24x to get 12x.
12x+40=-\left(2-33x\right)
Add 24 and 16 to get 40.
12x+40=-2+33x
To find the opposite of 2-33x, find the opposite of each term.
12x+40-33x=-2
Subtract 33x from both sides.
-21x+40=-2
Combine 12x and -33x to get -21x.
-21x=-2-40
Subtract 40 from both sides.
-21x=-42
Subtract 40 from -2 to get -42.
x=\frac{-42}{-21}
Divide both sides by -21.
x=2
Divide -42 by -21 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}