Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}-\sqrt{5}\right)\left(2\sqrt{2}+\sqrt{5}\right)}
Rationalize the denominator of \frac{12}{2\sqrt{2}-\sqrt{5}} by multiplying numerator and denominator by 2\sqrt{2}+\sqrt{5}.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2\sqrt{2}-\sqrt{5}\right)\left(2\sqrt{2}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{8-5}
The square of \sqrt{5} is 5.
\frac{12\left(2\sqrt{2}+\sqrt{5}\right)}{3}
Subtract 5 from 8 to get 3.
4\left(2\sqrt{2}+\sqrt{5}\right)
Divide 12\left(2\sqrt{2}+\sqrt{5}\right) by 3 to get 4\left(2\sqrt{2}+\sqrt{5}\right).
8\sqrt{2}+4\sqrt{5}
Use the distributive property to multiply 4 by 2\sqrt{2}+\sqrt{5}.