Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x=\left(c+2\right)e^{2}
Variable c cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by c+2.
12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x=ce^{2}+2e^{2}
Use the distributive property to multiply c+2 by e^{2}.
ce^{2}+2e^{2}=12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
ce^{2}=12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x-2e^{2}
Subtract 2e^{2} from both sides.
e^{2}c=-\frac{52}{e}-2e^{2}+52e
The equation is in standard form.
\frac{e^{2}c}{e^{2}}=\frac{-\frac{52}{e}-2e^{2}+52e}{e^{2}}
Divide both sides by e^{2}.
c=\frac{-\frac{52}{e}-2e^{2}+52e}{e^{2}}
Dividing by e^{2} undoes the multiplication by e^{2}.
c=-\frac{52}{e^{3}}+\frac{52}{e}-2
Divide 52e-\frac{52}{e}-2e^{2} by e^{2}.
c=-\frac{52}{e^{3}}+\frac{52}{e}-2\text{, }c\neq -2
Variable c cannot be equal to -2.