Solve for c
c=-\frac{52}{e^{3}}+\frac{52}{e}-2\approx 14.540803386
Share
Copied to clipboard
12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x=\left(c+2\right)e^{2}
Variable c cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by c+2.
12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x=ce^{2}+2e^{2}
Use the distributive property to multiply c+2 by e^{2}.
ce^{2}+2e^{2}=12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
ce^{2}=12\int _{-1}^{12}\int _{-1}^{1}x^{2}e^{x^{3}}\mathrm{d}x\mathrm{d}x-2e^{2}
Subtract 2e^{2} from both sides.
e^{2}c=-\frac{52}{e}-2e^{2}+52e
The equation is in standard form.
\frac{e^{2}c}{e^{2}}=\frac{-\frac{52}{e}-2e^{2}+52e}{e^{2}}
Divide both sides by e^{2}.
c=\frac{-\frac{52}{e}-2e^{2}+52e}{e^{2}}
Dividing by e^{2} undoes the multiplication by e^{2}.
c=-\frac{52}{e^{3}}+\frac{52}{e}-2
Divide 52e-\frac{52}{e}-2e^{2} by e^{2}.
c=-\frac{52}{e^{3}}+\frac{52}{e}-2\text{, }c\neq -2
Variable c cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}